Change of the tautomeric preference for radical cation of pyruvic acid. DFT studies in the gas phase

Authors

Department of Chemistry, Warsaw University of Life Sciences, 02-776 Warszawa, Poland

Abstract

Keto-enol tautomerism was investigated for ionized pyruvic acid using the DFT(B3LYP) method and the larger basis sets [6-31++G(d,p), 6-311++G(3df, 3pd) and aug-cc-pVDZ]. Change of the tautomeric preference was observed when going from the neutral to ionized tautomeric mixture. Ionization favors the enolization process (ketoenol) of pyruvic acid, whereas the ketonization (ketoenol) is preferred for the neutral system. Ionization influences also -electron delocalization, which increases exceptionally in the enol form, and slightly decreases in the keto form.

Keywords


[1] (a) A.J. Kresge, Pure Appl. Chem. 63 (1991) 213, (b) A.J. Kresge, Chem. Soc. Rev. 25 (1996) 275.
[2] (a)Z. Rappoport, The Chemistry of Enols, Wiley, Chichester, 1990, (b) Z. Rappoport, J. Fre, M. Sigalo, E. Rochli, Pure Appl. Chem. 69 (1997) 1933, (c) F.G. Bordwell, S. Zhang, I. Eventova, Z. Rappoport, J. Org. Chem. 62 (1997) 5371, (d) M. Mishima, Mustanir, I. Eventova, Z. Rappoprt, J. Chem. Soc. Perkin Trans. 2 (2000) 1505, (e) Z. Rappoport, The Chemistry of Phenols, Wiley, Chichester, 2003.
[3] (a) A. Fontana, P. de Maria, G. Siani, M. Pierini, S. Cerritelli, R. Ballini, Eur. J. Org. Chem. (2000) 1637, (b) E. Iglesias, Current Org. Chem. 8 (2004) 1.
[4] (a) P. Tarakeshwar, S. Manogaran, J. Mol. Struct. (Theochem) 430 (1998) 51, (b) Z. Zhou, D. Du, A. Fu, Vib. Spectrosc. 23 (2000) 181, (c) C. Chen, S.F. Shyu, J. Mol. Struct. (Theochem) 503 (2000) 201, (d) I.D. Reva, S.G. Stephanian, L. Adamowicz, R. Fausto, J. Phys. Chem. A 105 (2001) 4773, (e) X.Yang, X.J. Orlova, X.J. Zhou, K.T. Leung, Chem. Phys. Lett. 380 (2003) 34.
[5] (a) E.D. Raczyńska, K. Duczmal, M. Darowska, Pol. J. Chem. 79 (2005) 689, (b) E.D. Raczyńska, K. Duczmal, M. Darowska, Vibr. Spectrosc. 39 (2005) 37, (c) R. Kakkar, M. Pathak, N.P. Radhika, Org. Biomol. Chem. 4 (2006) 886.
[6] W.J. Ray, J.E. Katon, D.B. Philips, J. Mol. Struct. 74 (1981) 75.
[7] (a) M.C. Pirrung, J. Chen, E.G. Rowley, A.T. McPhail, J. Am. Chem. Soc. 115 (1993) 7103, (b) T. Tatai, H. Senda, H.H. Lee, A. Kuwae, K. Hanai, Spectrosc. Lett. 31 (1998) 379, (c) A.J.M. Carpy, P.P. Haasbroek, J. Ouhabi, D.W. Oliver, J. Mol. Struct. 520 (2000) 191, (d) B. Bartolini, C. Corniello, F. Sella, V. Somma, V. Politi, Dev. Tryptophan Serotonin Metab. 527 (2003) 527, (e) A. Evidente, A. Andolfi, M.A. Abouzeid, M. Vurro, M.C. Zonna, A. Motta , Phytochemical 65 (2004) 475.
[8] U. Weiss, J.M. Edwards, The Biosynthesis of Aromatic Compounds, Wiley, New York, 1980.
[9] (a) S.G. Lias, J.E. Bartmess, J.F. Liebman, J.L. Holmes, R.D. Levin, W.G. Mallard, J. Phys. Ref. Data Suppl. 1 (1988) 17, (b) W. Bertrand, G. Bouchoux, Rapid Commun. Mass Spectrom., 12 (1998) 1697, (c) G. van der Rest, T.B. Mourgues, J. Tortajada, H.E. Audier, Int. J. Mass Spectrom. 179-180 (1998) 293, (d) G. van der Rest, H. Nedev, P. Chamot-Rooke, T.B. Mourgues, T.B. McMahonm, E.H. Audier, Int. Mass Spectrom. 202 (2000) 161, (e) D.J. McAdoo, J. Mass Spectrom. Rev. 19 (2000) 38.
[10] R.G. Parr, W. Yang, Density Functional Theory of Atoms and Molecules, Oxford University Press, New York, 1989.
[11] (a) C. Lee, W. Yang, R.G. Parr, Phys. Rev. 37 (1988) 785, (b) A.D. Becke, Phys. Rev. B 38 (1988) 3098.
[12] L. Rodríguez-Santiago, O. Vendrell, I. Tejero, M. Sodupe, J. Bertran, Chem. Phys. Lett. 334 (2001) 112.
[13] (a) W.J. Hehre, L. Radom, P.v.R. Schleyer, J.A. Pople, Ab initio Molecular Theory, Wiley, New York, 1986, (b) D.E. Woon, T.H. Dunning, J. Chem. Phys. 98 (1993) 1358, (c) F. Jensen, Introduction to Computational Chemistry, Wiley, New York, 1999.
[14] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, V.G. Zakrzewski, J.A. Jr. Montgomery, R.E. Stratmann, J.C. Burant, S. Dapprich, J.M. Millam, A.D. Daniels, K.N. Kudin, M.C. Strain, O. Farkas, J. Tomasi, V. Barone, M. Cossi, R. Cammi, B. Mennucci, C. Pomelli, C. Adamo, S. Clifford, J. Ochterski, G.A. Petersson, P.Y. Ayala, Q. Cui, K. Morokuma, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J. Cioslowski, J.V. Oritz, A.G. Baboul, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. Gomperts, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B.G. Johnson, W. Chen, M.W. Wong, J.L. Andres, C. Gonzalez, M. Head-Gordon, E.S. Replogle, J.A. Pople Gaussian 98, Gaussian, Inc., Pittsburgh PA, 1998.
[15] (a) C.C. Wu, M.H. Lien, J. Phys. Chem. 100 (1996) 594, (b) C.C. Su, C.K. Lin, C.C. Wu, M.H. Lien, J. Phys. Chem. A 103 (1999) 3289.
[16] (a) E.D. Raczyńska, Anal. Chim. Acta 348 (1997) 431, (b) E.D. Raczyńska, R. Gawinecki, Trends Org. Chem. 7 (1998) 85, (c) E.D. Raczyńska, Pol. J. Chem. 73 (1999) 1863, (d) E.D. Raczyńska, Pol. J. Chem. 74 (2000) 1283, (e) E.D. Raczyńska, T. Rudka, M. Darowska, J. Mol. Struct. (Theochem) 574 (2001) 221, (f) E.D. Raczyńska, M. Darowska, M.K. Cyrański, M. Makowski, T. Rudka, J.F. Gal, P.C. Maria, J. Phys. Org. Chem. 16 (2003) 783, (g) E.D. Raczyńska, T. Krygowski, J.E. Zachara, B. Ośmiałowski, R. Gawinecki, J. Phys. Org. Chem. 18 (2005) 892.
[17] (a) B.J. Smith, M.T. Nguyen, W.J. Bouma, L. Radom, J. Am. Chem. Soc. 113 (1991) 6452, (b) B.J. Smith, L. Radom, J. Am. Chem. Soc. 112 (1990) 7525.
[18] E.D. Raczyńska, T.M. Krygowski, K. Duczmal, M. Hallmann, XVIII International Conference on Physical Organic Chemistry, Warsaw, 2006.
[19] T.M. Krygowski, J. Chem. Inf. Comput. Sci. 33 (1993) 70.
[20] (a) J. Kruszewski, T.M. Krygowski, Bull. Acad. Pol. Sci., Ser. Sci. Chim. 20 (1972) 907, (b) J. Kruszewski, T.M. Krygowski, Tetrahedron Lett. (1972) 3839, (c) T.M. Krygowski, J. Kruszewski, Bull. Acad. Pol. Sci., Ser. Sci. Chim. 21 (1973) 409, (d) T.M. Krygowski, J. Kruszewski, Bull. Acad. Pol. Sci., Ser. Sci. Chim. 22 (1974) 871.