Synthesis and characterization of new heat-resistance polymers based on N- (4-carboxy phenyl) trimellitimide and aromatic diamines

Authors

1 Organic Polymer Chemistry Research Laboratory, Department of Chemistry, Faculty of Sciences, Arak University, Arak, Iran

2 Department of Chemistry, Islamic Azad University, Saveh Branch, Saveh, Iran

Abstract

Five new aromatic poly(amide-imide)s (5a-e) were synthesized by direct polycondensation
reaction of N-(4-carboxy phenyl) trimellitimide (3) with five aromatic diamines (4a-e) by using
triphenyl phosphite in N-methyl-2-pyrrolidone (NMP) and pyridine at solution containing
dissolved CaCl2. All of the polymers were obtained in quantitative yields with inherent
viscosities between 0.29-0.40 dL/g. The resulting poly(amide-imide)s were characterized with
elemental analysis, viscosity measurements, solubility test, FT-IR spectroscopy, thermo
gravimetric analysis (TGA) and differential thermal gravimetry (DTG). All of the polymers were
soluble in N-methyl-2-pyrrolidone (NMP), N,N-dimethylacetamide (DMAC), N,N-dimethyl
formamide (DMF), dimethyl sulfoxide (DMSO) at room temperature. N-(4-carboxy
phenyl)trimellitimide (3) was prepared from the reaction of trimellitic anhydride (1) with 4-
aminobenzoic acid (2) at room temperature and refluxing at 100-110°C in acetic acid as a
solvent with a quantitative yield.

Keywords


[1] P.E. Cassidy, Thermallay Stable Polymers, Dekker, New York, 1980.
[2] H.H. Yang, Aromatic High Strength Fibers, Wiley, New York, 1986.
[3] R.B. Seymour, C.E. Carraher, Polymer Chemistry: An Introduction, Dekker, New York, 1981.
[4] C.P. Yang, W.T. Chen, Makromol. Chem. 193 (1992) 2323.
[5] Y.F. Li, J. Zhang, J. Polym. Sci. Part A 38 (2000) 189.
[6] D.J. Liaw, B.Y. Liaw, Polym. 40 (1999)3183.
[7] C.P. Yang, R.S. Chen, C.S. Wei, Mater. Chem. Phys. 77 (2002) 226.
[8] M.K. Ghosh, K.L. Mittal, Polyimides: Fundamentals and Applications, New York, 1996.
[9] W. Wrasidlo, J.M. Augl, J. Polym. Sci. Chem. 7 (1969) 321.
[10] J.L. Nieto, J.G. de la Campa, J. de Abajo, Macromol. Chem. 193 (1982) 557.
[11] K.H. Park, S. Watanabe, M.A. Kakimoto, Y. Imai, Macromol. Chem. Phys. 199 (1998) 1998.
[12] D.J. Liaw, W.H. Chen, Polym. 44 (2003) 3865.
[13] S. Mallakpour, E. Kowsari, J. Appl. Polym. Sci. 96 (2005) 435.
[14] S. Mallakpour, E. Kowsari, J. Polym. Adv. Technol. 17 (2006) 174.
[15] Kh. Faghihi, Kh. Zamani, A. Mirsamie, R. Sangi, Eurp. Polym. J. 39 (2003) 247.
[16] Kh. Faghihi, M. Hajibeygi, Eurp. Polym. J. 39 (2003) 2307.
[17] Kh. Faghihi, Kh. Zamani, A. Mirsamie, S.E. Mallakpour, J. Appl. Polym. Sci. 91 (2004) 516.
[18] Kh. Faghihi, Kh. Zamani, A. Mirsamie, S.E. Mallakpour, Polym. Inter. 53 (2004) 126.
[19] Kh. Faghihi, M. Hajibeygi, Macromol. Res. 13 (2005) 14.
[20] Kh. Faghihi, H.J. Naghavi, J. Appl. Polym. Sci. 96 (2005) 1776.
[21] Kh. Faghihi, Polym. J. 37 (2005) 449.
[22] Kh. Faghihi, J. Appl. Polym. Sci. 102 (2006) 5062.