Vanadium (IV and V) speciation with a catechol derivative and tetrazolium salt

Authors

Department of General and Inorganic Chemistry, University of Plovdiv, Plovdiv, Bulgaria

Abstract

The possibility of application of 4-nitrocatechol (4-NC) - tetrazolium salt - organic solvent
systems for liquid-liquid extraction-spectrophotometric vanadium (IV and V) speciation was
studied. Six commercially available tetrazolium salts (2,3,5-triphenyltetrazolium chloride (TTC),
3-(2-naphtyl)-2,5-diphenyltetrazolium chloride (Tetrazolium Violet, TV); 3-(4,5-dimethyl-2-
thiazol)-2,5-diphenyltetrazolium bromide (Thiazolyl Blue Tetrazolium, MTT), 2-(4-iodophenyl)-
3-(4-nitrophenyl)-5-phenyltetrazolium chloride (INT), 3,3’-(4,4’-biphenylene)bis(2,5-
diphenyltetrazolium) chloride (Neotetrazolium chloride, NTC) and 3,3’-[3,3’-Dimetoxy(1,1’-
biphenyl)-4,4’-diyl]bis(2,5-diphenyltetrazolium) chloride (Blue Tetrazolium chloride, BTC)) and
three organic solvents (chloroform, 1,2-dichloroethane, 1-butanol) were tested in this study. The
best results were obtained with MTT and chloroform. A direct, very simple, fast and sensitive
procedure for vanadium (IV and V) speciation based on the spectral differences of the extracted
ternary complexes of V(IV) and V(V) was developed. It was found that the optimization of the
MTT to 4-NC ratio has a key role in the speciation results. At deficiency of 4-NC towards MTT
the vanadium(IV) complex absorbed light at 390 and 570 nm, while the V(V) complex absorbed
only at 390 nm. The corresponding molar absorptivities were calculated to be εV(IV)390 = 3.6×104
L mol-1 cm-1, εV(IV)570 = 1.7×104 L mol-1 cm-1 and εV(V)390 = 3.1×104 L mol-1 cm-1. The method
was applied for vanadium (IV and V) speciation in industrial samples with low Fe and Al
content (catalyst for oxidation of SO2) and good results were obtained in terms of precision and
accuracy.

Keywords


[1] Z.L. Chen, G. Owens, Anal. Chim. Acta 607 (2008) 1.
[2] K. Pyrzynska, T. Wierzbicki, Talanta 64 (2004) 823.
[3] D. Rehder, Inorg. Chem. Commun. 6 (2003) 604.
[4] M.J.C. Taylor, J.F. Staden, Analyst 119 (1994) 1263.
[5] H. Tavallali, G. Hosseini, American Lab. 34 (2002) 40.
[6] Z.L. Chen, M.M. Rahman, R. Naidu, J. Anal. Atomic Spectrometry 22 (2007) 811.
[7] X.S. Li, X.C. Le, Anal. Chim. Acta 602 (2007) 17.
[8] M.S. Hu, P.P. Coetzee, Water SA 33 (2007) 291.
[9] M.S. Hu, P.P. Coetzee, South African J. Chem. 60 (2007) 113.
[10] J. Torres, M. Colina, Z. Rivas, Y. Cano, Ciencia 14 (2006) 341.
[11] K.L. Mandiwana, N. Panichev, Talanta 70 (2006) 1153.
[12] L. Zhao, X.S. Zhu, K. Feng, B.S. Wang, Intern. J. Environ. Anal. Chem. 86 (2006) 931.
[13] P.H. Pacheco, R.A. Olsina, P. Smichowski, L.D. Martinez, Talanta 74 (2008) 593.
[14] I. Nukatsuka, Y. Shimizu, K. Ohzeki, Anal. Sci. 18 (2002) 1009.
[15] E. Veschetti, D. Maresca, L. Lucentini, E. Ferretti, G. Citti, M. Ottaviani, Microchem J. 85 (2007)
80.
[16] Z.L. Chen, R. Naidu, Anal. Bioanal. Chem. 374 (2002) 520.
[17] B. Xu, G. Yi, H. Zhong, A. Zhang, Y. Xu, W. Pang, Fenxi Huaxue 30 (2002) 1322.
[18] H. Filik, K.I. Berker, N. Balkis, R. Apak, Anal. Chim. Acta 518 (2004) 173.
[19] J.M. Bosquesendra, M.S. Valencia, S. Boudra, Fresenius J. Anal. Chem. 360 (1998) 31.
[20] M.J.C. Taylor, G.D. Marshall, S.J.S. Williams, J.F. Staden, C. Saling, Anal. Chim. Acta 329 (1996)
275.
[21] J. Wei, N.Teshima, T. Sakai, Anal. Sci. 24 (2008) 371.
[22] M.A. Akl, A.A. El-Asmy, W.M. Yossef, Anal. Sci. 21 (2005) 1325.
[23] K. Gavazov, Z. Simeonova, A. Alexandrov, Talanta 52 (2000) 539.
[24] I.A. Tserkovnitskaya, M.F. Grigor’eva, L.N. Kovyazina, Vestnik Leningr. Univ. 22, (1971) 129.
[25] S.A. Shcherbakova, N.V. Mel’chakova, V.M. Peshkova, Zh. Anal. Khim. 31 (1976) 318.
[26] M.F. Grigor’eva, N.I. Slesar’, I.A. Tserkovnitskaya, Zh. Anal. Khim. 34 (1979) 2171.
[27] S. Nakano, S. Kinoshita, M. Ikuta, T. Kawashima, Anal. Sci. 6 (1990) 435.
[28] K. Gavazov, V. Lekova, G. Patronov, Acta Chim. Slov. 53 (2006) 506.
[29] K. Gavazov, V. Lekova, G. Patronov, M. Tǔrkyilmaz, Chem. Anal. (Warsaw) 51 (2006) 221.
[30] C.B.Root, Anal. Chem. 37 (1965) 1600.
[31] I.M. Novoselova, V.F. Barkovskii, Zh. Anal. Khim. 32 (1977) 1247.
[32] A.C.S. Costa, L.S.G. Teixeira, H.V. Jaeger, S.L.S. Ferreira, Microchim. Acta 130 (1998) 41.
[33] A.I Busev, Z.P. Karyakina, Zh. Anal. Khim. 22 (1966) 1350.
[34] T.D. Ali-Zade, G.A. Gamid-Zade, O.M. Agamirova, Azerb. Khim. Zh. 1 (1973) 97.
[35] Z. Marczenko, R. Lobinski, Talanta 35 (1988) 1001.
[36] C. Agarwal, M.K. Deb, R.K. Mishra, Anal. Let. 23 (1990) 2063.
[37] C. Agarwal, K.S. Patel, R.K. Mishra, Bull. Chem. Soc. Jpn. 64 (1991) 2616.
[38] Z. Simeonova, K. Gavazov, A. Alexandrov, Anal. Lab. 7 (1998) 184.
[39] K.B. Gavazov, A.N. Dimitrov, V.D. Lekova, Russ. Chem. Rev. 76 (2007) 169.
[40] L. Sommer, M. Bartušek, Folia Fac. Sci. Nat. UJEP Brno Chem. 7 (1966) 1.
P. Racheva et al. / J. Iran. Chem. Res. 1 (2008) 113-121
121
[41] S. Ya. Shnajderman, G.N. Prokof’eva, A.N. Demidovskaya, E.P. Klimenko, Zh. Obsht. Khim. 42
(1972) 24.
[42] A.M. Nardillo, J.A. Catoggio, Anal. Chim. Acta 74 (1975) 85.
[43] K. Gavazov, Zh. Simeonova, A. Alexandrov, Russ. J. Inorg. Chem. 46 (2001) 427.
[44] N. Iranpoor, N. Maleki, S. Razi, A. Safavi, Talanta 39 (1992) 281.
[45] F.M. Abdel-Gawad, R.M. Issa, Indian J. Chem. 25A (1986) 701.
[46] M.I. Bulatov, I.P. Kalinkin, Prakticheskoe Rukovodstvo po fotokolorimetricheskim I
spektrofotometricheskim metodam analiza, Khimiya, Leningrad, 1972, p. 141.
[47] K. Gavazov, G. Patronov, Scientific Researches of the Union of Scientists – Plovdiv, Series C.
Technics and Technologies, Vol. 5, Balkan Conference of Young Scientists, 16-18 June 2005, Union
of Scientists in Bulgaria-Plovdiv, 2005, p. 290.