Numerical analysis of the optimal catalyst distribution in created unsteady state conditions

Authors

Laboratoire de Génie des Procédés Chimiques, Université Ferhat Abbas Sétif, 19000, Sétif, Algérie

Abstract

The determination of the optimal distribution of the catalytic activity profile, which
maximizes the catalytic effectiveness, in created unsteady state conditions, is analyzed and
treated numerically for the case of a simple reaction. It was proven that the modulation, of the
temperature and the reactant concentration of the external bulk fluid, leads to a considerable
increase of the catalytic effectiveness. The optimal active element distribution is a Dirac- δ
function i.e. all the catalyst must be deposited at a specific distance from the center of the
catalytic pellet. It was shown that this optimal position changes with time in a sinusoidal manner.
This purpose can be achieved by the use of ultrasounds to artificially control the activity profile.

Keywords


[1] R. Aris, The Mathematical Theory of Diffusion and Reaction in Permeable Catalysts, Vol. 1.
Clarendon Press, Oxford, 1975.
[2] R.C. Dougherty, X.E. Verykios, A.I.Ch.E. J. 32 (1986) 1858.
[3] R.C. Dougherty, X.E. Verykios, Catal. Rev. Sci. Eng. 29 (1987) 101.
[4] B.A. Finlayson, Nonlinear Analysis in Chemical Engineering, McGraw-Hill, New York, 1980.
[5] J. Villadsen, M.L. Michelsen, Solution of Differential Equation Models by Polynomial
Approximation, Prentice-Hall, Englewood Cliffs, N.J. 1978.
[6] M. Morbidelli, A. Servida, A. Varma, Ind. Eng. Chem. Fund. 21 (1982) 278.
[7] M. Morbidelli, A. Varma, Ind. Eng. Chem. Fund. 21 (1982) 289.
[8] M. Morbidelli, A. Servida, S. Carra, A. Varma, Ind. Eng. Chem. Fund. 24 (1985) 116.
[9] H. Wu, A. Brunovska, M. Morbidelli, A. Varma, Chem. Eng. Sci. 45 (1990) 1855.
[10] R. Baratti, C. Giacomo, M. Morbidelli, Chem. Eng. Sci. 45 (1990) 1643.
[11] R. Baratti, H. Wu, M. Morbidelli, A. Varma, Chem. Eng. Sci. 48 (1993) 869.
[12] C.G. Vayenas, S. Pavlou, Chem. Eng. Sci. 42 (1987) 2633.
[13] R.M. Chemburkar, M. Morbidelli, A. Varma, Chem. Eng. Sci. 42 (1987) 2621.
[14] V.P. Zhdanov, Surface Science Reports, 55 (2004) 1.
[15] H.A. Hansen, J.L. Olsen, S. Jensen, O. Hansen, U.J. Quaade, Catalysis Communications 7 (2006)
272.
[16] V.V. Andreev, G.N. Ostryakov, G.G. Telegin, Chem. Phys. Reports 16 (1997) 159.
[17] V.V. Andreev, Mendeleev Communications 1 (1997) 35.
[18] V.V. Andreev, Mendeleev Communications 2 (1998) 43.
[19] V.V. Andreev, Ultrasonic Sonochemistry 6 (1999) 21.
[20] V.V. Andreev, A.V. Litvinenko, D.V. Lysenko, O.L. Figovsky, Sci. Israel-Tech. Adv. 2 (2000) 47.
[21] D. Luss, Chem. Eng. Sci. 26 (1971) 1713.
[22] W.E. Corbet, D. Luss, Chem. Eng. Sci. 29 (1974) 1473.
[23] J.B. Wang, A. Varma, Chem. Eng. Sci. 35 (1980) 613.