Simplex design method in simultaneous spectrophotometric determination of silicate and phosphate in boiler water of power plant and sewage sample by partial least squares

Authors

1 Chemistry Department, Faculty of Sciences, Yazd University, Yazd, Iran

2 Chemistry Department, Faculty of Sciences, K. N. Toosi University of Technology, Tehran, Iran

Abstract

Partial least squares modeling as a powerful multivariate statistical tool was applied to
the simultaneous spectrophotometric determination of silicate and phosphate in aqueous
solutions. The concentration range for silicate and phosphate were 0.02-0.6 and 0.4-3 μg ml-1,
respectively. The experimental calibration set was composed with 30 sample solutions using a
mixture design for two component mixtures. The absorption spectra were recorded from 500 to
900 nm. The optimum conditions were obtained by simplex optimization method. The values of
root mean square error of prediction (RMSEP) for silicate and phosphate using partial least
squares (PLS) were 0.0017 and 0.02 μg ml-1, respectively. The effects of various cations and
anions on detection of silicate and phosphate were investigated. The method was successfully
used for determination of silicate and phosphate in boiler water at power plant, well water and
sewage samples.

Keywords


[1] K.K.K. Kaisha, Kurita Handbook of Water Treatment, Kurita Water Industries, Japan 1985.
[2] V. Ittekkot, C. Humbrog, P. Schäfer, Biosciences 50 (2000) 776-782.
[3] American Public Health Association(19th ed), Standard Methods for the Examination of Water and
Wastewater, Water Environment Federation, American Water Work Association 1995.
[4] J. Saurina, S. Hernandez-Cassou, Analyst 120 (1995) 2601-2604.
[5] S. Motomizu, M. Oshima, K. Araki, Analyst 115 (1990) 1627-1630.
[6]. J. Paul, Anal. Chim. Acta 23 (1960) 178-182.
[7] Y. Narusawa, Anal. Chim. Acta 204 (1988) 53-62.
[8] A. Halasz, E. Pungor, and K. Polyak, Talanta 18 (1971) 577-586.
[9] N. Nakatani, D. Kozaki, W. Masuda, N. Nakagoshi, K. Hasebe, A. Mori, K. Tanaka, Anal. Chim.
Acta 619 (2008) 110-114.
M.R. Moghadam et al. / J. Iran. Chem. Res. 3 (2010) 1-9
9
[10] M. Ikedo, M. Mori, K. Kurachi, W. Hu, K. tanaka, Anal. Sci. 22 (2006) 117-121.
[11] A. Youssef El-Sayed, Y.Z. Hussein, M.A. Mohammed, Analyst 126 (2001) 1810-1815.
[12] A.Y. El-Sayed , Y.Z. Hussein, M.A. Mohammed, Anal. Sci. 17 (2001) 1461-1464.
[13] F. Mas-Torres, A. MunÕz, J. M. Sela, V. Cerda, Analyst 122 (1997) 1033-1038.
[14] C.X. Galhardo, J.C. Masini, Anal. Chim. Acta 417 (2000) 191-200.
[15] K. Grudpan, P. Ampan, Y. Udnan, S. Jayasvati, S. Lapanantnoppakhun, J. Jakmunee, G.D. Christian,
J. Ruzicka, Talanta 58 (2002) 1319-1326.
[16] P. Linares, M.D. Luque de castro, M. Val Carcel, Talanta 33 (1986) 889-893.
[17] F. Mas, J. M. Estela, V. Cerda, Int. J. Environ. Anal. Chem. 43 (1991) 71-78.
[18] Y. Narusawa, T. Hashimoto, Chem. Lett. 16 (1987) 1367-1370.
[19] Y.S. Li, Y. Muo, H.M. Xie, Anal. Chim. Acta 455 (2002) 315-325.
[20] B. R. Kowalski, Chemometrics mathematics and Statestics in Chemistry, Reidel Publishing
Company, Boston 1983.
[21] H. Martines, T. Karstang, T. Neas, J. Chemometr. 1 (2005) 201-219.
[22] A. Afkhami, M. Abbasi-Tarighat, Anal. Sci. 24 (2008) 779-783.
[23] J. Ghasemi, A. Niazi, Talanta 65 (2005) 1168-1173.
[24] A. Lorber, L. E. Wangen, B.R. Kowalski, J. Chemometr. 1 (2005) 19-31.
[25] H. Martens, T. Naes, Multivariate Calibration, John Wiley, New York 1991.
[26] D.M. Haaland, E.V. Thomas, Anal. Chem. 60 (1998) 1193-1202.
[27] K. R. Beebe, B. R. Kowalski, Anal. Chem. 59 (1987) 1007A-1017A.
[28] S. Wold, P. Geladi, K. Esbensen, J. Ochman, J. Chemometr. 1 (1987) 41-56.
[29] J. Ghasemi, S. Seifi, Talanta 63 (2004) 751-756.
[30] J. Ghasemi, S.Ahmadi, K. Torkestani, Anal. Chim. Acta 487 (2003) 181-188.
[31] J. Ghasemi, N. Shahabadi, H.R. Seraji, Anal. Chim. Acta 510 (2004) 121-126.