Structural characterization of BaZrO3 nanopowders prepared by stearic acid gel method


1 Department of Chemistry, Islamic Azad University, Naragh Branch, Naragh, Iran

2 Department of Chemistry, Faculty of Science, Islamic Azad University, Mahabad Branch,, Mahabad, Iran

3 Young Researchers Club, Islamic Azad University, Naragh Branch, Naragh, Iran


Pure barium zirconate nanopowders were successfully prepared in wet-chemistry synthesis
method, using barium stearate and tetra-n-butyl zirconate as Ba, Zr sources and stearic acid as
complexing reagent. The gel was calcined at 800 and 900 °C in air. Results of thermal analysis
are given, including both DTG and TG. Fourier transform infrared spectrometry (FTIR), X-ray
diffraction (XRD), transmission electron microscopy and (TEM) scanning electron microscopy
(SEM) were used to characterize the crystallization process, the particle size and morphology of
the calcined powders. The results indicated that barium zirconate nanopowders with particle size
between 20 and 25 nm could be obtained after calcinations of the dried gel at 900 °C for 2 h.


[1] A.M. Azad, S. Subramaniam, T.W. Dung, J. Alloys Compd., 334 (2002) 118-130.
[2] A. Erb, E. Walker, R. Flukiger, Physica C 245 (1995) 245-251.
[3] R. Vassen, X. Cao, F. Tietz, D. Basu, D. Stover, J. Am. Ceram. Soc. 83 (2000) 2023-2028.
[4] Z. Chen, S. Duncan, K.K. Chawla, M. Koopman, G.M. Janowski, Mater. Charact. 48 (2002) 305-314.
[5] H. Iwahara, T. Yajima, T. Hibino, K. Ozaki, H. Suzuki, Solid State Ionics 61 (1993) 65-69.
[6] M. Viviani, M.T. Buscaglia, V. Buscaglia, M. Leoni, P. Nanni, J. Eur. Ceram. Soc. 21 (2001) 1981-
[7] A. Manthiram, J.K. Kuo, J.B. Goodenough, Solid State Ionics 62 (1993) 225-234.
[8] R.C.T. Slade, S.D. Flint, N. Singh, Solid State Ionics 82 (1995) 135-141.
[9] S.M. Haile, Mater. Today 6 (2003) 24-29.
[10] H.S. Potdar, S.B. Deshpande, P.D. Godboole, S.K. Date, J. Mater. Res. 8 (1993) 948-950.
[11] J. Brzezinska Miecznik, K. Haberko, M.M. Bucko, Mater. Lett. 56 (2002) 273-278.
[12] F. Boschini, B. Robertz, A. Rulmont, R. Cloots, J. Eur. Ceram. Soc. 23 (2003) 3035-3042.
[13] G. Taglieri, M. Tersigni, P.L. Villa, C. Mondelli, J. Inorg. Mat. 1 (1999) 103-110.
[14] M. Veith, S. Mathur, N. Lecerf, V. Huch, T. Decker, H.P. Beck, J. Sol–Gel Sci. Technol. 17 (2000)
[15] A. Magrez, T. Schober, Solid State Ionics 175 (2004) 585-588.
[16] A.M. Azad, S. Subramaniam, Mater. Res. Bull. 37 (2002) 85-97.
[17] Y.V. Kolenko, A.A. Burukhin, B.R. Churagulov, N.N. Oleinikov, A.S. Vanetsev, Inorg. Mater. 38
(2002) 252-255.
[18] A.A. Athawale, A.J. Chandwadkar, P. Karandikar, R. Pasricha, M.S. Bapat, Radiat. Phys. Chem. 75
(2006) 755-759.
[19] M.S. Sadjadi, K. Zare, S. Khanahmadzadeh, M. Enhessari, Materials Lett. 262 (2008) 3679-3681.
[20] P.K. Sharma, V.V. Varadan, V.K. Varadan, Chem. Mater. 12 (2000) 2590–2596.