Anti-inflammatory and antimicrobial studies of biosensitive Knoevenagel condensate β-ketoanilide Schiff base and its Co(II), Ni(II), Cu(II) and Zn(II) complexes

Authors

1 Research Department of Chemistry, VHNSN College, Virudhunagar-626 001, India

2 Department of Pharmaceutical Chemistry, Manonmanium Sundaranar University, Tirunelveli-627 012, India

Abstract

A new series of transition metal complexes of Co(II), Ni(II), Cu(II) and Zn(II), has been
synthesized from the Knoevenagel condensate Schiff base ligand(L) derived from β-ketoanilide
and furfural with o-phenylenediamine and diethylmalonate. Structural features were determined
by spectral and analytical techniques. Square-planar geometry has been adopted by the
complexes except cobalt complex which has an octahedral geometry. The synthesized ligand and
its complexes were screened for their anti-inflammatory activity in male albino rats
(Carrageenan-induced rat paw oedema model). Among these complexes, copper complex shows
significant anti-inflammatory activity. It exhibits significant dose dependent activity in acute
inflammation. The doses of 100 and 200 mg kg-1 bw produced 38.3 % and 42.8 % inhibition
respectively after 3 h as compared with that of the standard drug (indomethacin) which showed
48.5 % inhibition. The in vitro antimicrobial activity of the ligand and its complexes was
monitored by disc diffusion method. It has been found that complexes have higher antimicrobial
activity than that of free ligand.

Keywords


[1] S. Yamada, Coord. Chem. Rev. 192 (1999) 537-555.
[2] T. Jeewoth, M.G. Bhowon, H.L.K. Wah, Trans. Met. Chem. 24 (1999) 445-448.
[3] L. Ostrosky-Zeichner, J.H. Rex, P.G. Pappas, R.J. Hamill, R.A. Larsen, H.W. Horowitz, W.G.
Powderly, N. Hyslop, C.A. Kauffman, J. Cleary, J.E. Mangino, J. Lee, Antimicrobial Agents and
Chemotherapy 47 (2003) 3149-3154.
[4] J. Lv, T. Liu, S. Cai, X. Wang, L. Liu, Y. Wang, J. Inorg. Biochem. 100 (2006) 1888-1896.
[5] R. Del Campo, J.J. Criado, E. Garcia, M.R. Hermosa, A. Jimenez-Sanchez, J.L. Manzano, E. Monte,
E. Rodriguez-Fernandez, F. Sanz, J. Inorg. Biochem. 89 (2002) 74-82.
[6] S. Belaid, A. Landreau, S. Djebbar, O. Benali-Baitich, G. Bouet, J.P. Bouchara, J. Inorg. Biochem.
102 (2008) 63-69.
[7] R. Gust, I. Ott, D. Posselt, K. Sommer, J. Med. Chem. 47 (2004) 5837-5846.
[8] Bottcher, H. Elias, E.J. Jager, H. Langlelderova, M. Mazur, L. Muller, H. Paulus, P. Pelikan, M.
Rudolph, M. Valko, (1993). Inorg. Chem. 32 (1993) 4131-4138.
[9] R. Klement, F. Stock, H. Elias, H. Paulus, P. Pelikan, M. Valko, M. Mazur, (1999). Polyhedron 18
(1999) 3617-3628.
[10] L.L. Koh, J.O. Ranford, W.T. Robinson, J.O. Svensson, A.L.C. Tau, D. Wu, Inorg. Chem. 35
(1996) 6466-6650.
[11] S. Belaid, A. Landrean, S. Djebbar, O. Benali-Baitich, M. Khan, G. Bouet, Trans. Met. Chem. 33
(2008) 511-516.
[12] P.D. Bernardo, P.L. Zanonato, S. Tamburini, P. Tomasin, P.A. Vigato, Dalton Trans. 39 (2006)
4711-4721.
[13] D.D. Perrin, W.L.F. Armarego, D.R. Perrin, Purification of Laboratory Chemicals, Oxford:
Pergamon Press, 1980.
[14] R.J. Angelici, Synthesis and Techniques in Inorganic Chemistry, Philadelphia: W.B. Saunders
Company, 1969.
[15] L.C. Miller, M.L. Tainter, Proc. Exp. Biol. Med. 57 (1944) 261-264.
[16] C.A. Winter, E.A. Risley, G.W. Nuss, Proc. Exp. Biol. Med. 111 (1962) 544-547.
[17] M.J. Pelczar, E.C.S. Chan, N.R. Krieg, Microbiology (5th ed.). W.C.B. Mc GrawHill, New York
(1998).
[18] K. Nakamoto, Infrared and Raman Spectra of Inorganic and Coordination Compounds (3rd ed.).
Wiley Interscience, New York, 1977.
[19] A.B.P. Lever, Inorganic Electronic Spectroscopy (2nd ed.). New York: Elsevier, New York, 1968.
N. Raman et al. / J. Iran. Chem. Res. 3 (2010) 83-95
95
[20] L.N. Sharada, A. Syamal, Elements of Magnetochemistry (2nd ed.), East-West Press, New Delhi,
1992.
[21] A.L. Sharma, I.O. Singh, H.R. Singh, R.M. Kadam, M.K. Bhide, M.D. Sastry, Trans. Met. Chem.
26 (2001) 532-537.
[22] R.N. Patel, N. Singh, K.K. Shukla, U.K. Chauhan, J. Nicols–Gutierrez, A. Castineiras, Inorg. Chim.
Acta 357 (2004) 2469-2476.
[23] A.W. Addison, In Copper Coordination Chemistry: Biochemical, Inorganic, Perspectives, (K.D.
Karlin, J. Zubieta ed.), Adenine Press, New York, 1983.
[24] A.W. Addison, Inorg. Chim. Acta 162 (1989) 217-220.
[25] R.K. Ray, G.B. Kauffman, Inorg. Chim. Acta 173 (1990) 207-214.
[26] R. Seangprasertkji, T.L. Riechel, Inorg. Chem. 23 (1984) 991-994.
[27] M.C.B. de Oliveira, M. Scarpellini, A. Neves, H. Terenzi, A.J. Bortoluzzi, B. Szpoganics, A.
Greatti, A.S. Mangrich, E.M. de Souza, P.M. Fernandez, M.R. Soares, Inorg. Chem. 44 (2005) 921-
929.
[28] R. Vinegar, W. Schreiber, R. Hugo, J. Pharmacol. Exp. Therap. 166 (1969) 96-103.
[29] Y. Anjaneyulu, R.P. Rao, Synth. React. Inorg. Met.-Org. and Nano-Met. Chem. 16 (1986) 257-272.
[30] N. Dharmaraj, P. Viswanathamurthi, K. Natarajan, Trans. Met. Chem. 26 (2001) 105-109.