Microwave assisted oxidation coupling of thiols to symmetrical disulfides with tripropylammonium fluorochromate (VI) (TPAFC)

Authors

1 Islamic Azad University, Ahvaz Branch , Faculty of Science, Ahvaz , Iran

2 Department of Chemistry, Faculty of Science, Imam Khomeini International University, Qazvin, Iran

Abstract

Tripropylammonium fluorochromate(VI) (TPAFC), is an efficient and new reagent, which is
prepared easily and oxidizes thiols to the corresponding disulfides, quickly. The reactions are
performed cleanly and are controlled to stop at the disulfide stage, without over-oxidation and
side products. Coupling of thiols to their corresponding disulfides, are studied in solution at
room temperature and in solution under microwave radiation. The easy procedure, simple workup,
short reaction times, and excellent yields, are another advantages of this reagent.

Keywords


[1] L.F. Fieser, M. Fieser, Reagents for Organic Synthesis, Wiley, New York, 1967.
[2] D.C .Jocelyn, Biochemistry of the Thiol Group, Academic Press, New York, 1992.
[3] G. Capozzi, G. Modena, S. Patai, The Chemistry of the Thiol Group, Wiley, New York, 1974.
[4] J. Lam, H. Bildose, L.P. Christensen, T. Thomsen, Acta Chem. Scand. Ser B 43 (1989) 799-
803.
[5] V. Srivastav, R. Gupta, R.R. Guptam, Ind. J. Chem. 39B (2000) 223-227.
N. Hasanzadeh & et al. / J. Iran. Chem. Res. 3 (2010) 155-160
160
[6] P. Metzner, Synthesis (1978) 669-674.
[7] D.L. Holbrook, Handbook of Petroleum Refining Processes, R.A. Meyers (Edi,) McGraw
Hill, 1996.
[8] A. Leitao, C. Costa, A. Rodrigues, Chem. Eng. Sci. 42 (1987) 2291-2298.
[9] E.P. Papadopoulos, A. Jarrar, C. H.Issidoides, J. Org. Chem. 31 (1966) 615-620.
[10] C. Lopez, F. Conzales, P. Cossio, C. Palomo, Synth. Commun. 15 (1985) 1197-1206.
[11] J.M. Aizpurua, M. Juaristu, B. Lecea, C. Palomo, Tetrahedron 41 (1985) 2903-2908.
[12] F. Yoneda, K. Suzuki, Y. Nitta, J. Org. Chem. 32 (1967) 727-735.
[13] K. Nakagawa, S. Shiba, M. Horikawa, K. Sato, H. Nakamura, N. Harada, F. Harada, Synth.
Commun. 10 (1980) 305-311.
[14] H. Firouzabadi, N. Iranpoor, F. Kiaeezadeh, J. Toofan, Tetrahedron 42 (1986) 719-726.
[15] S.V. Ley, A. Meerholz, D.H.R. Barton, Tetrahedron 37 (1982) 231-239.
[16] H.A. Muathen, Ind. J. Chem. 30B (1991) 522-530.
[17] A. Mckillop, D. Koyuncu, A. Krief, W. Dumont, P. Renier, M. Trabelsc, Tetrahedron Lett.
31 (1990) 5007-5011.
[18] H. Tamamura, A. Otaka, J. Nakamura, K. Okubo, T. Koide, K. Ikeda, N. Fujii, Tetrahedron
Lett. 34 (1993) 4931-4936.
[19] N.A. Noureldin, M. Coldwell, J. Hendry, D.G. Lee, Synthesis (1998) 1587-1595.
[20] (a) R.A. Abramovitch, Org. Prep. Proc. Int. 23 (1991) 683-689, (b) G. Majetich, R.J. Elec, Energy 30
(1995) 27-38, (c) S. Caddick, Tetrahedron 51 (1995) 10403-10409, (d) C.R. Strauss, R.W. Trainor,
Aust. J. Chem. 48 (1995) 1665-1672.
[21] (a) D. Bogdal, M. Warzala, Tetrahedron 56 (2000) 8769-8775, (b) D. Bogdal, J. Chem. Res. (1998)
468-472, (c) D. Bogdal, J. Pielichowski, K. Jaskot, Org. Prep. Proc. 30 (1998) 427-434.
[22] N. Iranpoor, B. Zeynizadeh, Synthesis (1999) 49-56.