Conductometric study of the complex formation of Rb+, Cs+, NH4 +, K+, Tl+ and Ag+ ions with several crown ethers in acetonitrile-dimethylsulfoxide and acetonitrile-dimethylformamide binary mixtures

Authors

1 Chemistry Department, Faculty of Sciences, K.N. Toosi University of Technology, Tehran, Iran

2 Chemistry Department, Faculty of Sciences, Razi University, Kermanshah, Iran

Abstract

A conductance study of the interaction between Cs+, Rb+, NH4
+, K+, T1+ and Ag+ ions and
18-crown-6 (18C6), benzo-18-crown-6 (B18C6), dicyclohexyl-18-crown-6 (DC18C6),
dicyclohexyl-24-crown-8 (DC24C8), dibenzo-24-crown-8 (DB24C8) in different binary
mixtures of acetonitrile (AN) with dimethylsulfoxide (DMSO) and dimethylformamide (DMF)
at 25 °C has been carried out. Formation constants of the resulting 1:1 complexes were
determined from the conductance-mole ratio data and found frequently vary in the order
DC18C6 > 18C6 > B18C6 > DC24C8 > DB24C8 for Rb+ ion and DC18C6 > DC24C8 > 18C6
> B18C6 > DB24C8 for NH4
+ ion, DC24C8 > DC18C6 > 18C6 > B18C6 ≈ DB24C8 for Cs+
ion, DC18C6
> DC24C8 > 18C6 > B18C6 > DB24C8 for K+ ion, DC24C8 > DC18C6 > 18C6 > B18C6 >
DB24C8 for Tl+ ion and DC24C8 > DC18C6 > 18C6 > DB24C8 > B18C6 for Ag+ ion. It was
found that the stability of the resulting complexes increased by increasing acetonitrile mole
fraction in the solvent mixtures. The interactions of the solvent molecules with metal ions and
ligands show an important role for the complex formation process. Therefore, in addition to
influences of the solvent, the effects of the number of members in the macrocycle, nature of the
substituents in the polyether ring and cavity size are discussed.

Keywords


[1] C.J. Pedersen, J. Am. Chem. Soc. 89 (1976) 2495-2496.
J. Ghasemi & et al. / J. Iran. Chem. Res. 3 (2010) 167-177
177
[2] C.J. Pedersen, J. Am. Chem. Soc. 89 (1976) 7017-7036.
[3] J.M. Lehn, Struct. Bond. 16 (1973) 1-69.
[4] J.M. Lehn, Accounts Chem. Res. 11 (1978) 49-57.
[5] D.J. Cram, J.M. Cram, Science 183 (1974) 803-809.
[6] Y. Chao, D.J. Cram, J. Am. Soc. 98 (1976) 1015-1017.
[7] D.J. Cram, J.M. Cram, Accounts Res. Chem. 11 (1978) 8-14.
[8] C.L. Liotta, E.M. Burgess, C.C. Ray, E.D. Black, B.E. Fair, Preprints Am. Chem. Soc. Div. Petro.
Chem. 30 (1985) 367-373.
[9] K. Chandler, C.W. Culp, D.R. Lamb, C.L. Liotta, C.A. Eckert, Ind. Eng. Chem. Res. 37 (1998) 3252-
3257.
[10] S. Osaki, Y. Kawai, S. Yajima, K. Kimura, Anal. Sci. 20 (2004) 1165-1169.
[11] D.A. Richens, D. Simpson, S. Peterson, A. McGinn, J.D. Lamb, J. Chromatogr. A 1016 (2003) 155-
164.
[12] Y. Kudo, J. Usami, S. Katsuta, Y. Takeda, Talanta 62 (2004) 701-706.
[13] T. Takayanage, Anal. Sci. 20 (2004) 255-265.
[14] R. Saari-Nordhaus, J.A. Anderson, M. James, J. Chromatogr. A 1039 (2004) 123-127.
[15] R. Pavithran, M.L.P. Reddy, Radiochim. Acta 92 (2004) 31-38.
[16] N.K. Dalley, R.M. Izatt, J.J. Christensen (ed.): in Synthetic Multidentate Macrocyclic Compounds,
Academic Press, New York 1978.
[17] M. Hiraoka, Crown Compounds. Their Characteristics and Applications, Mir, Moscow, 1986.
[18] A. Lewandowski, J. Malinska, J. Chem. Soc. Faraday Trans. 89 (1983) 2015-2019.
[19] V.A. Shormanov, V.A. Sharnin, Reagent solvation and its influence on complex formation
equilibrium in aqueous-organic solvents. In the monograph: Achievement and problem of the theory
of solvation. Structural – thermodynamic aspects, Nauka, Moscow, 1998.
[20] R.M. Izatt, R.E. Terry, D.P. Nelson, Y.Chan, D.J.Eatough, J.S. Bradshaw, L.D.Hansen, J.J
Christensen, J. Am. Chem. Soc. 98 (1976) 7626-7630.
[21] R.M. Izatt, G. Wu, Thermochim. Acta 154 (1989) 161-166.
[22] E. Leda, A. Koczorowska, X. Lei, M.K. Kalinowski, Polish J. Chem. 67 (1993) 211-217.
[23] S.V. Elcov, A.C. Kern, A.M. Zholnovach, N.V. Bondarev, Zh. Obshch. Khim. 67 (1997) 1430-1438.
[24] N.V. Bondarev, Zh. Fiz. Khim. 73 (1999) 74-77.
[25] I.S. Zaiceva, E.N. kabakova, N.V.Bondarev, Zh. Obshch. Khim. 70 (2000) 17-19.
[26] R.M. Izatt, J.S. Bradshaw, S.A. Nielsen, J.D. Lamb, J.J. Christensen, D. Sen, Chem. Rev. 85 (1985)
271-339.
[27] R.M. Izatt, K. Pawlak, J.S. Bradshaw, R.L Bruening, Chem. Rev. 91 (1991) 1721-2085.
[28] R.M. Izatt, K Pawlak, J.S. Bradshaw, R.L Bruening, Chem. Rev. 95 (1995) 2529-2586.
[29] M. Shamsipur, A.I. Popov, J. Am. Chem. Soc. 101 (1979) 4051-4055.
[30] G. H. Rounaghi, M. Mohajerani, Sh. Ashrafi, H. Ghasemi, S. Sedaghat, M. Tavakoli, J. Incl.
Phenom. 58 (2007) 1-6.
[31] M. Taghdiri, M. K. Rofouei, M. Shamsipur, J. Incl. Phenom.58 (2007) 181-186.
[32] Y.C. Wu, W.F. Koch, J. Solution Chem. 20 (1991) 391-401.
[33] Y. Takeda, Bull. Chem. Soc. Jpn. 56 (1983) 3600-3602.
[34] D.P. Zollinger, F. Bulten, A. Christenhuse, M. Bos, W.E. Van Der Linden, Anal. Chim. Acta 198
(1987) 207-222.
[35] G.J. Janz, R.P.T. Tomkins, Nonaqueous Electrolyte Handbook, Vol. 1, Academic Press, New York,
1972.
[36] V. Gutmann, The Donor-Acceptor Approach to Molecular Interactions, Plenum, New York, 1978.
[37] M. Shamsipur, J. Ghasemi, J. Incl. Phenom. 20 (1995) 157-171.
[38] J. Ghasemi, M. Shamsipur, J. Solution Chem. 25 (1996) 485-504.
[39] M. Hasani, M. Shamsipur, J. Incl. Phenom. 16 (1993) 123-137.
[40] M. Shamsipur, M. Saeidi, J. Solution Chem. 29 (2000) 1187-1198.
[41] M. Shamsipur, M. Irandoust, J. Solution Chem. 37 (2008) 657-664.
[42] G.A. Krestov, N.P. Novosyolov, in T.K. Kemp (ed.), Ionic Solvation, Ellis Harwood, New York,
1994.