Conformational behaviors of trans-2,3-bis(methylthio)-1,4-dioxane, -dithiane and –diselenane. A hybrid-DFT study and NBO interpretations

Authors

1 Department of Chemistry, Science Faculty, Arak Branch, Islamic Azad University, Arak, Iran

2 Department of Chemistry, Roudehen Branch, Islamic Azad University, Roudehen, Iran

3 Department of Chemistry, Islamic Azad University, Zanjan Branch, P.O.Box 49195.467,Zanjan, Iran

Abstract

The conformational behaviors of 2,3-bis(methylthio)-1,4-dioxane (1), 2,3-bis(methylthio)-
1,4-dithiane (2) and 2,3-bis(methylthio)-1,4-diselenane (3) have been analyzed by means of
hybrid-density functional theory (B3LYP/Def2-TZVPP) based method and NBO interpretation.
B3LYP/Def2-TZVPP results showed that the axial conformations of compounds 1-3 are more
stable than their equatorial conformations. The calculated Gibbs free energy difference (Geq–Gax)
values (i.e. ΔGeq-ax) at 298.15 K and 1 atm between the axial and equatorial conformations
decrease from compound 1 to compound 3. The NBO analysis of donor-acceptor (LP→σ*)
interactions showed that the anomeric effects (AE) decrease from compound 1 to compound 3.
On the other hand, the calculated dipole moment values between the axial and equatorial
conformations [Δ(μeq - μax)] increase from compound 1 to compound 2 but decrease from
compound 2 to compound 3. However, the variations of the calculated Δ(μeq - μax) values are not
in the same trend observed for the corresponding AE and ΔG values. Therefore, the calculated
Δμ values do not seem to be sufficient to account for the axial preferences in compounds 1-3.
These findings led to the proposal that the AE, due to donor→acceptor hyperconjugation effect,
is more significant for the explanation of the axial conformational preferences of compounds 1-3
than the electrostatic effect.

Keywords


[1] U. Lemieux, S. Koto, Tetrahedron 30 (1974) 1933-1944.
[2] T. Edwards, Chem. Ind. (London) (1955) 1102-1111.
[3] E. Juaristi, G. Cuevas, The Anomeric Effect, CRC Press. Inc., Florida, 1995.
[4] C. Altona, C. Romers, E. Havinga, Tetrahedron Lett. 21 (1959) 16-20.
[5] N.D. Epiotis, R.L. Yates, R.J. Larson, C.R. Kirmayer, F. Bernardi, J. Am. Chem. Soc. 99 (1977)
8379-8388.
[6] E.L. Eliel, S.H. Wilen, Stereochemistry of Organic Compounds, Wiley, New York, 1994.
[7] J.P. Praly, R.U. Lemieux, Can. J. Chem. 65 (1987) 213-223.
[8] M.A. Pericás, A. Riera, J. Guilera, Tetrahedron 42 (1986) 2717-2718.
[9] N.S. Zefirof, L.G. Gurvich, A.S. Shashkov, M.Z. Krimer, E.A. Vorob’eva, Tetrahedron 32 (1976)
1211-1219.
[10] E.L. Eliel, E. Juaristi, J. Am. Chem. Soc. 100 (1978) 6114-6119.
[11] E. Juaristi, J. Chem. Edu. 56 (1979) 438-441.
[12] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A.
Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone,
B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K.
Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene,
X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E.
Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K.
Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels,
M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q.
Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I.
Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M.
Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian
03, Revision B.03, Gaussian, Inc., Wallingford CT, 2004.
[13] A.D. Becke, J. Chem. Phys. 98 (1993) 5648-5652.
[14] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785-789.
[15] W.J. Hehre, L. Radom, P.V.R. Schleyer, J.A. Pople, Ab initio Molecular Orbital Theory Wiley, New
York, 1986.
[16] J.M. Seminario, P. Politzer, (Eds), Modern Density Function Theory, A Tool for Chemistry,
Elsevier, Amsterdam, 1995.
[17] E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann, C.M. Morales, F.
Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2004. NBO
Version 5.G.
[18] F. Weigend, R. Ahlrichs, Phys. Chem. Chem. Phys. 7 (2005) 3297-3305.
[19] D. Nori-Shargh, F. Roohi, F. Deyhimi, R. Naeem-Abyaneh, J. Mol. Struct. (Theochem) 763 (2006)
21-28.
D. Nori-Shargh & et al. / J. Iran. Chem. Res. 3 (2010) 179-189
189
[20] D. Nori-Shargh, M. Malekhosseini, F. Deyhimi, J. Mol. Struct. (Theochem) 763 (2006) 187-198.
[21] D. Nori-Shargh, F. Deyhimi, J.E. Boggs, S. Jameh-Bozorghi, R. Shakibazadeh, J. Phys. Org. Chem.
20 (2007) 355-364.
[22] D. Nori-Shargh, H. Yahyaei, J. Mol. Struct. (Theochem) 913 (2009) 8-15.
[23] D. Nori-Shargh, N. Hassanzadeh, M. Kosari, S. Sharifi, J. Mol. Struct. (Theochem) 940 (2010) 129-
134.
[24] A. Zeinalinezhad, D. Nori-Shargh, Z. Abbasi-Bakhtiari, J.E. Boggs, J. Mol. Struct. (Theochem) 947
(2010) 52-57.
[25] D. Nori-Shargh, H. Yahyaei, J.E. Boggs, J. Mol. Graph. Model. 28 (2010) 807-813.
[26] K.B. Wiberg, M.A. Murcko, J. Phys. Chem. 91 (1987) 3616-3620.
[27] F. Freeman, A. Phornvoranunt, W.J. Hehre, J. Phys. Org. Chem. 11 (1998) 831-835.
[28] T.M. Gilbert, Tetrahedron Lett. 39 (1998) 9147-9150.
[29] M. Remko, P.D. Lyne, W.G. Richards, Phys. Chem. Chem. Phys. 1 (1999) 5353-5357.
[30] D. Strickland, R.A. Caldwell, J. Phys. Chem. 97 (1993) 13394-13402.
[31] I. Arnason, G.K. Thorarinson, E. Matern, J. Mol. Struct. (Theochem) 545 (1998) 91-102.