Synthesis and application of chelating resins based on polyacrylonitrilediethylenetriamine for metal ions removal

Authors

Laboratory of Polymer Chemistry, Department of Organic and Biochemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

Abstract

Chelating resins based on polyacrylonitrile and diethylenetriamine (PAN-DTA) were
prepared through the simple reaction of polyacrylonitrile with various volume percents of
diethylenetriamine (DTA), (25, 50, 75 and 100). The prepared resins were applied to remove
heavy metal ions such as Cu(II), Zn(II) and Cd(II) from aqueous solutions. The sorption
behaviors of the resins for these metal ions were found to be greater at higher solution pH values.
Highest sorption on PAN-DTA was determined as 5 mmol g-1 for Cu(II). The number of amine
groups present in the resin (amine capacity) is depended on the volume percent of DTA and the
maximum capacity was obtained 6.25 mmol g-1. The resins and their metal complexes have been
studied by FT-IR spectroscopy, scanning electronic microscopy (SEM) and thermogravimetry
analysis (TGA). All these analyses methods confirmed the presence of metal in the metal-resin
complexes.

Keywords


[1] V.K. Gupta, Industrial Engineering Chemistry Research 37 (1998) 192-202.
[2] E.M. Jouad, F. Jourjon, G. Le Guillanton, D. Elothmani, Desalination 180 (2005) 271-276.
[3] L. Charerntanyarak, Water Sci. Technology 39 (1999) 135-138.
[4] A.D. Wheatley, M.D. Smith, J. Parr, N. Muhammad, Environmental Technology 19 (1998) 633-
638.
[5] J. Miislehiddino, Y. Ulud, H. Onder Ozbelge, L. Yilmaz, Talanta 46 (1998) 1557-1565.
[6] K.E. Geckeler, Pure Appl. Chem. 73 (2001) 129-136.
[7] K. Trivunac, S. Stevanovic, Chemosphere 64 (2006) 486-491.
[8] G. Borbely, E. Nagy, Desalination 240 (2009) 218-226.
[9] S.E. Bailey, T.J. Olin, R.M. Bricka, D.D Adrian, Water Research 33 (1999) 2469-2479.
[10] W.S. Wan Ngah, M.A.K.M. Hanafiah, Bioresource Technology 99 (2008) 3935-3948.
[11] E.M. Jouad, F. Jourjon, G.L. Guillanton, D. Elothmani: Desalination 180 (2005) 271-276.
[12] G. McKay, Y. S. Ho, J.C.Y. Ng, Sep. Purification Rev. 28 (1999) 87-125.
[13] S. Chirale, M. Ratto, M. Rovatti, Water Research 34 (2000) 2971-2978.
[14] L. Mercier, T.J. Pinnavaia, Advanced Mat. 9 (2004) 500-503.
[15] M.A. Llosa Tanco, D.A. Pacheco Tanaka, V.C. Flores, T. Nagase, T.M. Suzuki, Reactive Functional
Polymers 53 (2002) 91–101.
[16] Z. Su, X. Chang, G. Zhan, X. Luo, Q. Pu, Anal. Chim. Acta 310 (1995) 493-499.
[17] H. Zheng, X. Chang, N. Lian, J. Mao, S. Wang, Y. Dong, Microchimica Acta 149 (2005) 259-
266.
[18] N. Lian, X. Chang, H. Zheng, S. Wang, Y. Dong, S. Lai, Annali di chimica 95 (2005) 677-683.
[19] X. Chang, Z. Su, G. Zhan, X. Luo, W. Gao, Analyst 119 (1994) 1445-1449.
[20] C.-Y. Chen, C.-L. Chiang, C.-R. Chen, J. Haz. Mat. 169 (2009) 593–598.
[21] S.V. Dimitrova, Water Research 36 (2002) 4001-4008.
[22] Y. Chen, Y. Zhao, Reactive Functional Polymers 55 (2003) 89-98.
[23] Y. Chen, C. Liang, Y. Chao, Reactive Functional Polymers 36 (1998) 51-58.
[24] M.R. Lutfor, S. Silong, W.M. Zin, M.Z. Ab Rahman, M. Ahmad, J. Haron, European Polymer J.
36 (2000) 2105-2113.
[25] N. Arsalani, M. Hosseinzadeh, Iranian Polymer J. 14 (2005) 345-352.
[26] G.R. Kiani, N. Arsalani, Iranian Polymer J. 15 (2006) 727-735.
[27] Sh. Deng, R. Bai, J.P. Chen, Langmuir 19 (2003) 5058-5064.
[28] L.C. Santa Maria, M.C.V. Amorim, M.R.M.P. Aguiar, P.I.C. Guimaraes, M.A.S. Costa, A.P.
Aguiar, P.R. Rezende, M.S. Carvalho, F.G. Bareosa, J.M. Andrade, R.C.C. Ribeiro, Reactive
Functional Polymers 40 (2001) 133-143.
[29] N. Arsalani, R. Rakh, E. Ghasemi, A.A. Entezami, Iranian Polymer J. 18 (2009) 623-632.