Volumetric properties of {n-butyl acetate + 1-butanol + 1,2- butanediol} at temperature between [298.15 ,303.15 and 308.15] K.

Authors

1 Department of Physical and Theoretical Chemistry , Faculty of Chemistry, Islamic Azad University, Tehran North Branch, Tehran, Iran

2 Faculty of Chemistry, University of Bu Ali Sina, Hamadan, Iran

3 Department of Chemistry, Faculty of Science, Malayer University, Malayer, Iran

Abstract

Densities and excess molar volume of the binary and ternary mixtures formed by nbutylacetate
+ 1-butanol + 1,2-butanediol were measured at (298.15, 303.15, and 308.15) K for
the liquid region and at ambient pressure (81.5) k Pa , for the whole composition range. The
excess molar volumes,Vm
E and excess partial molar volume Vi
E ,were calculated from
experimental densities.The excess molar volumes are positive over the mole fraction rage for
binary mixtures of n-butylacetate (1) + 1-butanol (2) and n-butylacetate (2) + 1,2-butanediol (3)
and increase with increasing temperatures from (298.15 to 308.15)K. The excess molar volumes
of 1-butanol (1) + 1,2-butanediol (3) are negative and decrease with increasing temperatures
from (298.15 to 308.15)K..The experimental data of constitute were correlated as a function of
the mole fraction by using the Redlich–Kister equation for binary and , Cibulka, Jasinski and
Malanowski , Singe et al, Pintos et al , Calvo et al, Kohler, and Jacob - Fitzner for ternary
mixture ,respectively. The experimental data of the constitute binaries are analyzed to discuss the
nature and strength of intermolecular interactions in these mixtures.

Keywords


[1] H. Iloukhani, M. Rakhshi, J. Mol. Liq. 149 (2009) 86-95.
[2] M. Rezaei Sameti, H. Iloukhani, M. Rakhshi, J. Mol. Liq. 149(2009 ) 96-100.
[3] H. Iloukhani, M. Rezaei Sameti, J. Chem. Thermodyn. 37 (2005) 1151-1161.
[4] M. Rezaei Sameti, H. Iloukhani, M. Rakhshi, Rus. J. Phy.Chem A. 84 (2010 ) 2023-2032.
[5] E. Alvarez, B. Sanjurjo, A.Cancela, J. M. Navaza, Eng. Res. Des. 78 (2000) 889-893.
[6] S. Kumar, K. Kusakabe, L.S. Fan, AIChE J 39 (1993) 1399-1405.
[7] W.E. Acree, Academic Press, New York, 1984.
[8] C.C. Tsao, J.M. Smith, Chem. Eng. Prog. Symp. Ser. 7 (1953) 107-121.
[9] K.T. Jacob, K. Fitzner, Thermochem. Acta 18 (1977) 197-206.
[10] R. Rastogi, J. Nath, S.S. Das, J. Chem. Eng. Data 22 (1977) 249-252.
[11] A. Radojkovic, D. Tasic, B. Grozdanic, B. Djorjevic, M. Malic, J. Chem. Thermodyn. 9 (1977) 349-
356.
[12] D.T. Wu, Fluid Phase Equilib. 30 (1986) 149-156.
[13] W. Cao, W. Knudsen, A. Fredenslund, P. Rasmussen, Ind. Eng. Chem. Res. 32 (1993) 2088-2092.
[14] W. Cao, A. Fredenslund, P. Rasmussen, Ind. Eng. Chem. Res. 31 (1992) 2603-2619.
[15] W. Cao, K. Knudsen, A. Fredenslund, P. Rasmussen, Ind. Eng. Chem. Res. 32 (1993) 2077-2087.
[16] O. Redlich, A.T. Kister, Ind. Eng. Chem. 40 (1948) 345-348.
[17] M. Domiınguez, I. Gascon, A. Valen, F.M. Royo, J.S. Urieta, J. Chem. Thermodyn. 32 (2000) 1551-
1568.
[18] J.A. Riddick, W.B. Bunger, Organic Solvents, third ed., Wiley, New York, 1970.
[19] A. Mariano, M. Postigo, D. Gonzalez-Salgado, L. Romanı, J. Chem. Thermodyn. 39 (2007) 218-224.
[20] K. Sivakumar, P.R. Naidu, Fluid Phase Equilibr. 127 (1997) 173-180.
[21] G. Chandrasekhar, P. Venkatesu, M.V.P. Rao, J. Chem. Eng. Data 45 (2000) 590-593.
[22] A.K. Nain, J. Solution Chem. 36 (2007) 497-516.
[23] B. Hawrylak, K. Gracie, R. Palepu, J. Solution Chem. 27 (1998) 17-31.
[24] H.A. Zarei, J. Mol. Liq. 124 (2006) 23-31.
[25] H. Iloukhani, R. Ghorbani, J. Solution Chem. 27 (1998) 141-149.
[26] A.S. Al-Jimaz, J.A. Al-Kandary, A.H.M. Abdul-Latif, Fluid Phase Equilib 218 (2004) 247-260.
[27] P.S. Ramesh, P.S. Chandreshwar, J.C. Das, P. Ghosh, J. Chem. Eng. Data. 35 (1990) 93-97.
[28] F. Corradini, A. Marchetti, M. Tagliazucchi, L. Tassi, G. Tosi, Aust. J. Chem. 47 (1994) 1117-1126.