Dispersive liquid–liquid microextraction based on solidification of floating organic drop combined with flame atomic absorption spectrometry for determination trace amount of cobalt in water samples

Authors

Department of Chemistry, Faculty of Science, Islamic Azad University – Arak Branch, Arak, Iran

Abstract

An efficient, rapid, simple, and highly selective dispersive liquid–liquid microextraction based
on solidification of floating organic drop (DLLME-SFOD), combined with flame atomic
absorption spectrometry was developed for preconcentration and determination of trace amounts
of cobalt in water samples. In this method, an appropriate mixture of acetone and
1-undecanol was injected rapidly into the aqueous sample containing cobalt-2N1N complex, as a
result cloudy mixture was formed. After centrifugation, the test tube was cooled for 5 min. The
solidified 1-undecanol on top of the solution was transferred into a suitable vial. Then, it was
dissolved in 100 μL of methanol and finally introduced into the flame atomic absorption by
microsampler injector. Several factors influencing the microextraction efficiency, such as the
nature and volume of organic solvent, pH of aqueous solution, amount of complexing agent,
stirring rate and extraction time were investigated and optimized. Under the optimum conditions,
the enhancement factor was 68. The limit of detection, 6 μgL−1 and relative standard deviation
(RSD) 2.64% (n=8) were obtained. The proposed method was applied to the analysis of various
water samples.

Keywords


[1] Z. Marczenko, Separation and Spectrometry Determination of Elements, Ellis Hardwood, London,
1986.
[2] A .N.Anthemidis, G.A. Zacharidis, J.A. Stratis, J. Anal. At. Spectrom. 18 (2003) 1400-1403.
[3] M. Ma, F.F. Cantwell, Anal. Chem.70 (1998) 3912-3919.
[4] S. King, J.S. Meyer, A.R.J. Andrews, J. Chromatogr. A 982 (2002) 201-208.
[5] S. Pedersen-Bjergaard, K.E. Rasmussen, J. Chromatogr. A 1184 (2008) 132-142.
[6] C.D. Stalikas, Trends Anal. Chem. 21 (2002) 343-355.
[7] E.K. Paleogos, D.L. Giokas, M.I. Karayannis, Trends Anal. Chem. 24 (2005) 426-436.
[8] J. Chen, K. Chuan Teo, Anal. Chim. Acta 434 (2001) 325-330.
[9] Q. Zhou, H. Bai, G. Xie, J. Xiao, J. Chromatogr. A 1188 (2008) 148-153.
[10] H. Ebrahimzadeh, Y. Yamini, F. Kamarei, S. Shariati, Anal. Chim. Acta 594 (2007) 93-100
[11] L. Tavakoli, Y. Yamini, H. Ebrahimzadeh, S. Shariati, J. Chormatogra. A 1196 (2008) 133-138.
[12] E. Zeini Jahromi, A. Bidari, Y. Assadi, M.R. Milani Hosseini, M.R. Jamali, Anal. Chim. Acta 585
(2007) 305-311.
[13] M.T. Naseri, M.R. Milani Hosseini, Y. Assadi, A. Kiani, Talanta 75 (2008) 56-62.
[14] M. Shamsipur, M. Ramezani, Talanta 75 (2008) 294-300.
[15] P. Berton, E. M. Martinis, L.D. Martinez, R.G. Wuilloud, Anal. Chim. Acta 640 (2009) 40-46.
[16] H. Xu, Y. Liao, J.Yao, J. Chromatogr. A 1167 (2007) 1-8.
[17] M. Baghdadi, F. Shemirani, Anal. Chim. Acta 613 (2008) 56-63.
[18] M. Leong, S.D. Huang, J. Chromatogr. A 1211(2008) 8-12.
[19] M. Rezaee, Y. Assadi, M.R. Milani Hosseini, E. Aghaee, F. Ahmadi, S. Berijani, J. Chromatogr. A
1116 (2006) 1-9.
[20] M.R. Khalili Zanjani, Y. Yamini, S. Shariati, J.A. Jonsson, Anal. Chim. Acta 585 (2007) 286-293.
[21] H. Xu, Z. Ding, L. Lv, D. Song, Y.Q. Feng, Anal. Chim. Acta 636 (2009) 28-33.
[22] M. Gharehbaghi, F. Shemirani, M. Baghdadi, Intern. J. Environ. Anal. Chem. 88 (2008) 513-523.
[23] G. Yang, Z. Huang, Q. Hu, J. Yin, Talanta 58 (2002) 511-515
[24] M. Gharabaghi, F. Shemirani, M. Davudabadi Farahani, J. Hazard. Mat. 165 (2009) 1049-1055.
[25] A. Safavi, H. Abdollahi, M.R. Hormozi Nezhad, R. Kamali, Spectrochim. Acta Part A 60 (2004)
2897-2901.
[26] H. Abdolmohammadzadeh, E. Ebrahimzadeh, Cent. Eur. J. Chem. 8 (2010) 617-625.
[27] Y. Ye, A. Ali, X. Yin, Talanta 57 (2002) 945-951.
[28] P.X. Baliza, L.S.G. Teixeira, V.A. Lemos, Microchim. J. 93 (2009) 220-224.