Kinetic study of unsaturated ketones epoxidation with hydrogen peroxide through the inverse phase transfer catalysis and effect of ultrasonic waves in this epoxidation

Authors

Department of Physical chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran

Abstract

Kinetic study of epoxidation of unsaturated ketone of mesityl oxide was studied by using
Hydrogen peroxide in the presence of dodecyltrimethyl ammonium bromide (DTAB) as an
inverse phase transfer catalyst. The reaction was carried out in the two-phase media of waterheptane
with 1:1 ratio in 25 °C. It was found that the order of reaction for mesityl oxide for
ketone concentration in the range of 0.03- 0.1 mol L-1 are 0.8906. And also with regard to
catalyst concentrations in the range of 0.07- 0.2 mol L-1, the order of reaction for catalyst is
0.1205. The order of reaction of Hydrogen peroxide in the range o of 1.5-4 mol L-1 concentration
for mesityl oxide is –0.1411. The activation energy of the reaction is 27.51 kJ mol-1 in the
restricted temperature between 10-25 °C and it was observed that reaction rate enhances by
temperature increase. As the phase transfer catalyst depends strongly on mass transfer between
two phases, it is well understood that ultrasonic waves have a greater efficiency of interface
mixing than conventional agitation. So, in this research the effect of ultrasonic waves in
comparison with magnetic stirrer was studied. The results showed that an ultrasonic wave
accelerates on the reaction.

Keywords


[1] B.D. Brandes, E.N. Jacobsen, Tetrahedron Lett. 36 (1995) 5123-5126.
[2] M. Palucki, J. Gormick, E.N. Jacobsen, Tetrahedron Lett. 36 (1995) 5457-5460.
[3] D. Mohajer, S. Tangestaninejed, J. Chem. Soc. Chem. Commun. (1993) 240-241.
[4] D. Mohajer, S. Tangestaninejed, Tetrahedron Lett. 35 (1994) 945-948.
[5] W. Zhang, E.N. Jacobsen, J. Org. Chem. 56 (1991) 2296-2298.
[6] T. Schwenkreis, A. Berkessel, Tetrahedron Lett. 34 (1993) 4785-4788.
[7] R. Newmann, M. Dahan, J. Chem. Soc. Chem. Commun. (1995) 171-172.
[8] R. Newmann, A.M. Klenkin, J. Org. Chem. 59 (1994) 7577-7579.
[9] C. Cativela, F. Figueras, J.M. Fraile, J.I. Garcia, J.A. Mayoral, Tetrahedron Lett. 36 (1995) 4125-
4128.
[10] R.W. Murray, M. Singh, B.L. Williams, H.M. Moncrieff, Tetrahadron Lett. 36 (1995) 2437-2440.
[11] W. Adam, F. Prechti, M.J. Richter, A.K. Smerz, Tetrahedron Lett. 36 (1995) 4991-4994.
[12] J.M. Fraile, J.I. Garcia, J.A. Mayoral, L.C. Menorval, J. Chem. Soc. Chem. Commun. (1995) 539-
540.
[13] Y.D. Wu, W.D. K. Lai, J. Org. Chem. 60 (1995) 673-680.
[14] W. Adam, L. Hadjarapoglou, B. Nestler, Tetrahedron Lett. 31 (1990) 331-334.
[15] P.A. Greco, M. Nishizawa, N. Marinovic, J. Am. Chem. Soc. 99 (1977) 5773-5778.
[16] L.J. Mathias, R.A. Waidya, J. Am. Chem. Soc. 108 (1986) 1093-1094.
[17] W.K. Fife, Z.D. Zhang, J. Org. Chem. 51 (1986) 3744-3748.
[18] W.K. Fife, Y. Xin, J. Am. Chem. Soc. 109 (1987) 1278-1279.
[19] S.M. Chang, S.M. Jwo, J. Mol. Catal. A 160 (2000) 357-366.
[20] S.M. Hung, J.J. Jwo, J. Mol. Catal. A 154 (2000) 55-63.
[21] B. Boyer, A. Hambardzoumian, N. Beylerian, Tetrahedron 56 (2000) 303-305.
[22] V. Polackova, V. Tornova, P. Eleeko, J. Ultrason. Sonochemistry 3 (1996) 15-17.
[23] B.S. Bhathkhande, S.D. Samant, J. Ultrason Sonochemistry 5 (1998) 7-12.
[24] M.H. Entezari, A.A. Shameli, J. Ultrason. Sonochemistry 7 (2000) 169-172.
[25] M. H. Entezari, A. Keshavarzi, J. Ultrason. Sonochemistry, 8 (2001) 213-216.
[26] F.G. Tao, H. Huang, J. Appl. Chem. 5 (1988) 91-94.
[27] E. Ishikawa, T. Yamase, J. Mol. Catal. A 142 (1999) 61-76.