The effect of temperature and water absorption on enzymatic degradation of starch / polyvinyl alcohol blend film by α-Amylase


Department of Physical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.


Thermoplastic starch (TPS) materials present several advantages to the plastic industry and
when blended with other materials they can exhibit improved mechanical and moisture
sensitivity properties compared to pure TPS materials. Further investigations on TPS: PVA
blends are of particular interest due to their excellent compatibility and improved properties such
as tensile strength, elongation, toughness and processability, predominantly due to an
improvement in melt strength compared to pure TPS material. The aims of the study were to
investigate the effect of varying polyvinyl alcohol content within the TPS blends on the rate and
extent of starch enzymatic hydrolysis using enzyme alpha-amylase. Analyses the enzymatic
degradation behavior of poly(vinyl alcohol) with starch was based on the determinations of
Weight loss and the reducing sugars. The degraded residues have been examined by FT-IR
spectroscopy and scanning electronic microscopy (SEM).


[1] Y. Doi, K. Fukuda, editors, Biodegradable Plastics and Polymers, Amsterdam, Elsevier, 1994.
[2] M.T. Taghizadeh, N. Nalbandi, A. Bahadori, Polymer Lett. 2 (2008) 65–76.
[3] M.T. Taghizadeh, A. Mehrdad, Ultrason. Sonochem. 10 (2003) 309–313.
[4] S. Rath, R. Singh, J. Applied Polymer Sci. 70 (1998) 1795–1810.
[5] B. Chen, R. Julian, G. Evans, Carbohydrate Polymers 61 (2005) 455-463.
[6] L. Averous, J. Macromolecular Sci. Part C-Polymer Reviews, C44 (2004) 231-274.
[7] M. Vert, L. Feijen, A. Albertsson, G. Scott, editors, Biodegradable Polymers and Plastics. Wiltshire,
UK: Redwood Poss Ltd, The Royal Society of Chemistry, 1992.
[8] P.A. Wagner, B.J. Little, K.R. Hart, R.I. Ray, Int Biodeterior Biodegrad 38 (1996) 125–32.
[9] L. Avérous, L. Moro, P. Dole, C. Fringant, Polymer 41 (2000) 4157–4167.
[10] M. Sene, C. Thevanot, L. Prioul, J. Cereal Sci. 26 (1997) 211–221.
[11] T. Hayashi, Prog. Polym. Sci. 19 (1994) 663–702.
[12] C.S. Pereira, A.M. Cunha, R.L. Reis, B. Vazquez, J.S. Roman, J. Mater. Sci. Mater. Med. 9 (1998)
[13] N. Teramoto, T. Motoyama, R. Yosomiya, M. Shibata, European Polym. J. 39 (2003) 255–261.
[14] K. Sandhu, N. Singh, N. Malhi, Food Chem. 89 (2005) 541–548.
[15] T. Ouchi, S. Ichimura, Y. Ohya, Polymer 47 (2006) 429–434.
[16] Z. Konsula, M. Liakopoulou-Kyriakides, Process Biochem. 39 (2004) 1745-1749.
[17] G.M.A. Beynum, J.A. Roels, Starch Conversion Technology, Marcel Dekker, Inc, New York, 1985.
[18] C. Xiao, M. Yang, Carbohydr. Polym. 64 (2006) 37–40.
[19] Y. Yun, Y. Na, S. Yoon, J. Polymers Environm. 14 (2006) 71-77.
[20] Griffin GJL, ACS Advance in Chemistry, 134, 1975.
[21] C. Bastioli, V. Bellotti, L.D. Giudice, G. Gilli, Microstructure and Biodegradability of Mater-bi
Products. In Biodegradable Poly- mers and Plastics, The Royal Society of Chemistry, Cambridge,
[22] G.L. Miller, Anal. Chem. 3 (1959) 426–428.
[23] C.V. Benedict, W.J. Cook, P. Jarrett, J.A. Cameron, S.J. Huang, J.P. Bell, J. Applied Polymer Sci. 28
(1983) 327-334.
[24] M. Huskic, I. Brnardic, Z. Igon, M. Ivankovic, 354 (2008) 3326–3331.
[25] D. Demirgo, C. Elvirs, J.F. Mano, A.M. Cunha, E. Piskin, R.L. Reis, Polymer Degradation Stability,
70 (2000) 161-170.
[26] Y.X. Xu, M.A. Hanna, Carbohydrate Polymers, 59 (2005) 521-529.
[27] D.H. Kim, S.K. Na, J.S. Park, J. Applied Polymer Sci. 88 (2003) 2100-2017.
[28] A.K. Bajpai, J. Shrivastava, Polym. Int. 54 (2005) 1524-1536.
[29] O. Araju, A.M. Cunha, M. Mota, Biomaterials 25 (2004) 2687-2693.
[30] N. Follain, C. Joly, P. Dole, C. Bliard, Carbohydrate Polymers 60 (2005) 185-192.
[31] Y.X. Xu, V. Miladinov, M.A. Hanna, Cereal Chem. 81 (2004) 735-740.
[32] S. Iuliana, C. Maria, B. Ruxanda, V. Cornelia, Polym. Degradation Stability 93 (2008) 1884-1890.
[33] K. Pal, A.K. Banthia, D.K. Majumdar, Trends Biomater. Artif. Organs 20 (2006) 59–67.