Utilization of electrodeposition on a graphite probe modified with palladium in determination of lead by graphite furnace atomic absorption spectrometry in water and environmental samples

Authors

Department of Chemistry, Faculty of Science, K.N. Toosi University of Technology, P.O. Box 16315- 1618, Tehran, Iran

Abstract

In this work a rapid and selective procedure for separation and preconcentration of lead
(Pb2+) before determination by electrothermal atomic absorption spectrometry (ETAAS) was
developed. The procedure is based on the electrodeposition on a graphite probe modified with
palladium. The lead was deposited from acetate buffer solution at pH 5.5. Various parameters,
such as pH of solutions, deposition potential, buffer concentration, stirrer speed, time of
deposition and temperature program, were optimized. After optimization of the conditions,
detection limit 17 ng L–1 by 3 σ, and enrichment factor 61 were achieved for 2 min
electrodeposition time and improved as deposition time was increased. Linearity of calibration
was kept between 0.05-0.50 μg L–1 with a correlation coefficient of 0.9979 and suitable
precision, R.S.D. % = 5.1 (n = 8). Samples were digested completely in a closed microwave
digestion system using only perchloric acid, and interference owing to various cations was also
investigated. The procedure was successfully applied to determine the presence of lead in rice,
radish, okra, onion and water samples.

Keywords


[1] S. E. Manahan, Environmental Chemistry, CRC Press, Boca Raton, Fl, (1994).
[2] J.O. Nriagu, The Biochemistry of Lead in the Environment; Ed. Elsevier, Amsterdam (1978).
[3] World Health Organization, Fifty-third Report of the joint FAO/WHO, WHO, Technical Report
Series 896, Geneva, Switzerland, (2000).
[4] World Health Organization, Guidlines for Drinking Water Quality: First Addendum to Third Edition.
Vol. 1, 2006 recommendation.
[5] A.N. Anthemidis, S.V. Koussoroplis, Talanta 71 (2007) 1728-1733.
[6] J. Cao, P. Liang, R. Liu, J. Hazard. Mater.152 (2008) 910-914.
[7] W.T. Sturges, R.M. Harrison, Atmospheric Environment 19 (1985) 1495-1502.
[8] Y. Xua, J. Zhoua, G. Wang, J. Zhoub, G. Tao, Anal. Chim. Acta 584 (2007) 204-209.
[9] A.N. Anthemidis, K.G. Ioannou, Anal. Chim. Acta 668 (2010) 35-40.
[10] T.A. Maranhao, D.L.G. Borges, Marcia A.M.S. da Veiga, A.J. Curtius, Spectrochim. Acta 60B
(2005) 667-672.
[11] J. Chen, S. Xiao, Xiaohua Wu, K. Fang, Wenhan Liu, Talanta 67 (2005) 992-996.
[12] Guangyu Yanga,Weibo Fena, Chun Lei, Weilie Xiaoa, Handong Suna, J. Hazard. Mater.162 (2009)
44-49.
[13] N. Tokman, S. Akman, M. Ozcan Talanta 59 (2003) 201-205.
[14] E. Bulska, Pure Appl. Chem. 73 (2001) 1-7.
[15] J. P. Matousek, H. K. J. Powell, Talanta 40 (1993) 1829-18310
[16] E. J. Czobik, J. P. Matousek, Spectrochim. Acta 35B (1980) 741-751.
[17] N. Mashkouri Najafi, S. Shahparvizi, H. Rafati, E. Ghasemi, R. Alizadeh, J. Pharm. Biomed. Anal.
53 (2010) 58-61.
R. Moradkhani & et al. / J. Iran. Chem. Res. 4 (2011) 153-164
164
[18] E. Beinrohr, M. Rapta, M. L. Lee, P. Tschopel, G. Tolg, Mikrochim. Acta 110 (1993) 1-12.
[19] E. Beinrohr, Fresenius J. Anal. Chem. 338 (1990) 735-737.
[20] J.P. Matousek, H.K.J. Powell, Spectrochim. Acta Part B 50 (1995) 857-872.
[21] A. Vrana, J. Komarek, Fresenius J. Anal. Chem. 355 (1996) 321-323.
[22] M. Konecna, J. Komarek, L. Trnkova, Spectrochim. Acta Part B 63 (2008) 700-703.
[23] M.C. Radulescu, A. Chira, M. Radulescu, B. Bucur, M.P. Bucur, G.L. Radu, Sensors 10 (2010)
11340-11351.
[24] J.P. Matousek, H.K.J. Powell, Spectrochim. Acta Part B 50 (1995) 857-872.
[25] E. Beinrohr, Fresenius J. Anal. Chem. 338 (1990) 735-737.
[26] A. B. Volynsky, Spectrochim. Acta Part B 55 (2000) 103-150.
[27] H. M. Ortner, E. Bulska, U. Rohr, G. Schlemmer, S. Weinbruch, B. Welz, Spectrochim. Acta Part B
57 (2002) 1835-1853.
[28] M. Konecna, J. Komarek, L. Trnkova, Spectrochim. Acta Part B 63 (2008) 700-703.
[29] H.M. Irving, H. Freiser, T.S. West, Compendium of Analytical Nomenclature, IUPAC Analytical
Chemistry Division, Pergamon Press, oxford, 1977.