Determination of ultra trace of thiosemicarbazide by adsorptive stripping voltammetric method

Authors

1 Department of Chemistry, Dezful Branch, Islamic Azad University, Dezful, Iran

2 Department of Chemistry, Islamic Ilam University, Branch of Ilam, Ilam, Iran

Abstract

In the present work, an adsorptive stripping voltammetric method using a hanging mercury
drop electrode (HMDE) was described in order to determine the ultra trace of thiosemicarbazide
in different real samples. The method is based on accumulation of thiosemicarbazide on mercury
electrode. The potential was scanned to the negative direction and the differential pulse stripping
voltammograms were recorded. The instrumental and chemical parameters were optimized. The
optimized conditions were obtained in pH of 10.0, accumulation potential of 0.00 mV,
accumulation time of 60 s, scan rate of 80 mV s-1 and pulse height of 50 mV. The relationship
between the peak current versus concentration was linear over the range of 0.50-100.00 ng mL-1.
The limits of detection were 0.03 ng mL-1 and the relative standard deviation at 5.00 and 50.00
ng mL-1 of thiosemicarbazide ion were obtained 2.1 and 1.7%, respectively (n = 8).

Keywords


[1] R. Setnescu, C. Barcutean, S. Jipa, T. Setnescu, Polymer Degrad. Stability. 85 (2004) 997-1001.
[2] D. Kovala Demertzi, A. Domopoulou, M.A. Demertzis, A. Papageor-giou, D.X. West, Polyhedron. 16
(1977) 3625-3633.
[3] E. Bernejo, R. Carballo, A. Castineiras, R. Dominguez, A.E. Liberta, C. Maichle-Mossmer, M.M.
Salberg, D.X. West, Eur. J. Inorg. Chem. 6 (1999) 965-973.
[4] E.E. Ebenso, U.J. Ekpe, B.I. Ita, O.E. Offiong, U.J. Ibok, Mater. Chem. Phys. 60 (1999) 79-90.
[5] A.S. Fouda, L.H. Madkour, A.A. El-Shafei, A.H. El-Asklany, Mat.-Wiss. Werkstoff. Tech. 26 (1995)
342-346.
L. Hosseinzadeh & et al. / J. Iran. Chem. Res. 4 (2011) 177-185
185
[6] M.M. Singh, R.B. Rastogi, B.N. Upadhyay, M. Yadav, Mater. Chem. Phys. 80 (2003) 283-293.
[7] E. Khamis, M.A. Ameer, N.M. Al-Andis, G. Al-Senani, Corrosion. 56 (2000) 127-138.
[8] G. Al-Senani, E. Khamis, A.A. Ameer, Adsorption. Sci. Technol. 18 (2000) 177-194.
[9] G.F.S. Andrade, G.A. Micke, M.F.M. Tavares, M.L. A. Temperini, J. Raman Spectros. 35 (2004)
1034-1041.
[10] B.T. Gowda, D.S. Mahadevappa, Microchem. J. 28 (1983) 374-391.
[11] M.A. Karimi, H. Abdollahi, H. Karami, F. Banifatemeh, J. Chin. Chem. Soc. 55 (2008) 129-136.
[12] I. Pinto, B. S. Sherigara, H.V.K. Udupa, Analyst. 116 (1991) 285-289.
[13] D. Amin, B. Shaba, Analyst. 112 (1987) 1457-1458.
[14] M. Sarwar, M.A. Sabir, R.R. Iqbal, Zh. Anal. Khim. 47 (1992) 932-934.
[15] Y.S. Varma, I. Singh, B.S. Garg, R.P. Singh, J. Chin. Chem. Soc. 28 (1981) 169-171.
[16] A. Niazi, J. Ghasemi, M. Zendehdel, Talanta 74 (2007) 247-254.
[17] J. Ghasemi, A. Niazi, R. Ghorbani, Anal. Lett. 39 (2006) 1159-1169.
[18] A. Niazi, J. Chin. Chem. Soc. 54 (2007) 1195-1200.
[19] T.H. Li, Q.L. Zhao, M.H. Huang, Microchim. Acta 157 (2007) 245-249.
[20] A. Babaei, E. Shams, A. Samadzadeh, Anal. Sci. 22 (2006) 955-959.
[21] K. Zarei, M. Atabati, H. Ilkhani, Talanta 69 (2006) 816-821.
[22] M.B. Gholivand, A.A. Romiani, Anal. Chim. Acta 571 (2006) 99-104.
[23] R. Pirch, W.W. Kubiak, J. Electroanal. Chem. 599 (2007) 59-64.
[24] S. Abbasi, H. Khani, R. Tabaraki, Food Chem. 123 (2010) 507-512.
[25] A.A. Ensafi, T. Khayamian, A. Benvidi, E. Mirmomtaz, Anal. Chim. Acta. 561 (2006) 225-232.
[26] E. Laviron, J. Electroanal. Chem. 49 (1974) 395-402.
[27] A.P. Brown, F.A. Anson, Anal. Chem. 49 (1977) 1589-1594.
[28] L. Hosseinzadeh, S. Abbasi, H. Khani, Z. Khani, Transition. Met. Chem. 34 (2009) 425-431.