Synthesis of Nano-Ca doped Ceria by combustion method and investigating of effective factors on process

Author

Department of chemistry, University of Science and Technology of Iran, Tehran, Iran

Abstract

A Synthesis of doped ceria by combustion method is performed. Two types of fuel such as
urea and glycine is used to investigate the effect of fuel reactivity and reaction rate on the
morphology of the resulted powders. Thermo gravimetric analysis is carried out by (TG/DTA,
Rigaku Thermalplus TG 8120) to study the exo–endo temperature of as-received powder. The
crystalline phases are identified by X-ray diffraction analysis (XRD). The average crystallite
size, D, is estimated by using the Scherrer formula about 40nm. The calculated lattice parameter
is 5.44Å. A FT-IR study is carried out on the obtained gel and reveals that a Glycine-Metal
complex is formed in alkaline conditions which help in preventing metal ions selective
precipitation and in maintaining the compositional homogeneity of the resulted powder.
Finally, the effect of pH value, in the primary solution, and fuel type on the powder
characteristics such as lattice parameter and morphologies are described.

Keywords


[1] X. Hongmei, Y. Hongge, Ch. Zhenhua, Solid State Sciences 10 (2008) 1179-1184.
[2] J.V. herle, T. Kawada, N. Sakai, Solid State Ionics 86-88 (1996) 1255-1258.
[3] C.H. Shek, J.K. L. Lai, T.S. Gu, G. M. Lin, Nanostruct. Mater. 8 (1997) 506–610.
[4] A. Janbey, R.K. Pati, S. Tahir, P. Pramanik, J. Eur. Ceram. Soc. 21 (2001) 2285–2289.
[5] L.C. Pathak, T.B. Singh, S. Das, A.K. Verma, Mater. Lett. 57 (2002) 380–385.
[6] J.J. Kingsley, K.C. Patil, Mater. Lett. 6 (1988) 427–432.
[7] R.H.G.A. Kiminami, M.R. Morelli, Am. Cream. Soc. Bull. 79 (2000) 63–67.
[8] Y.Q. Wu, Y.F. Zhang, X.X. Huang, J.K. Guo, Cream. Int. 27 (2001) 265–268.
[9] V.V. Karasev, A.A. Onishchuk, Combust. Explos. ShockWave 37 (2001) 734–736.
[10] B.C.H. Steele, Solid State Ionics 129 (2000) 95–110.
[11] H. Inaba, H. Tagawa, Solid State Ionics 83 (1996) 1–16.
[12] J. Herle, D.Seneviratne, A.J. McEvoy, J. Eur. Ceram. Soc. 19 (1999) 837-841.
[13] F.Y. Wang, S. Chen, S. Cheng, Electrochem. Commun. 6 (2004) 743-746.
[14] F.Y. Wang, S. Chen, Q. Wang, S.X. Yu, S. Cheng, Catal. Today 97 (2004) 189-194.
[15] D.A. Fumo, M.R. Morelli, A.M. Segadaes, Mater. Res. Bull. 31 (1996) 1243-1255.
[16] D.A. Fumo, J.R. Jurado, A.M. Segadaes, Mater. Res. Bull. 32 (1997) 1459-1470.
[17] J.R. Jain, K.C. Adiga, V.R.P. Verneker, Comb. Flame 40 (1981) 71–79.
[18] R.D. Purohit, S. Saha, A.K. Tyagi, J. Nucl. Mater. 288 (2001) 7–10.
[19] T.V. Anuradha, S. Ranganathan, T. Mimani, Scripta Mater. 44 (2001) 2237–2241.
[20] T. Mimani, J. Alloys Compd. 315 (2001) 123–128.
[21] L.C. Pathak, T.B. Singh, S. Das, A.K. Verma, Mater. Lett. 57 (2002) 380–385.
[22] T.Y. Peng, H.P. Yang, X.L. Pu, B. Hu, Z.C. Jiang, Mater. Lett. 58 (2004) 352–356.
[23] R.D. Purohit, S. Saha, A.K. Tyagi, J. Nucl. Mater. 288 (2001) 7–10.
[24] N. Dasgupta, R. Krishnamoorthy, K.T. Jacob, J. Inorg. Mater. 3 (2002) 143–149.
[25] T. Mimani, K.C. Patil, Mater. Phys. Mech. 4 (2001) 1–5.
[26] T.V. Anuradha, S. Ranganathan, T. Mimani, Scripta Mater. 44 (2001) 2237–2241.
[27] G. Fagherazzi, S. Polizzi, M. Bettinelli, A. Speghini, J. Mater. Res. 15 (2000) 586–589.
[28] D.G. Lamas, R.E. Juarez, G.E. Lascalea, J. Mater. Sci. Lett. 20 (2001) 1447–1449.
[29] A. Ainirad, M. M. Kashani-Motlagh, A. Maghsoodipoor, J. Alloys Compd. 509 (2011) 1505-1510
[30] B.D. Cullity, Elements of X-Ray Diffraction, Addison-Wesley, Reading, MA, 1956.
A. Ainirad / J. Iran. Chem. Res. 4 (2011) 199-206
206
[31] P. Dattaa, P. Majewski, F. Aldinger, Mater. Charact. 60 (2009) 138-143.
[32] M. Yan, T. Mori, F. Yea, D. R. Ou, J. Eur. Ceram. Soc. 28 (2008) 2709–2716.