Adsorption behavior of cadmium on modified mesoporous aluminosilicates


1 Nuclear Science and Technology Research Institute, AEOI , P.O. Box 11365/8486, Tehran, Iran

2 Chemistry Department, Islamic Azad University, Saveh Branch, Saveh, Iran


In this study, mesoporous MCM-41 has been modified by incorporation of aluminum ion as
a rapid, simple and inexpensive method for modification. The adsorbent is characterized using
powder X-ray diffraction and nitrogen adsorption-desorption isotherm data. The distribution
coefficient of cadmium ion on the mesoporous aluminosilicates has been enhanced with the
increase of the aluminum in the framework of the adsorbent. Adsorption behavior of cadmium
on the Al10MCM-41 and Al20MCM-41 adsorbents has been studied and experimental
adsorption isotherm is successfully described by Langmuir model. The maximum adsorption
cadmium capacity was 11.5 mg g-1. The effects of pH and adsorption kinetics have also been
studied by batch method and the result shows pH of solution hasn't any effect on cadmium


[1] Y.K. Bayhan, B. Keskinler, A. Cakici, M. Levent, G. Akay, Water Res. 35 (2001) 2191-2200.
[2] G.A. Drush, Sci. Total Environ. 67 (1993) 75-89.
[3] J. Dezuane, Handbook of Drinking Water Quality Standards and Controls, Van Nostrand Reinhold,
New York, 1990.
[4] C.S. Brooks, Metal Recovery from Industrial Waste, Lewis Publishers, Ins., Michigan, USA, 1991.
[5] G. Tiravanti, D. Petruzzelli, R. Passino, Water Sci. Technol. 36 (1997) 197-207.
[6] R. Molinari, S. Gallo, P. Argurio, Water Res. 38 (2004) 593-600.
[7] Z. Hu, L. Lei, Y. Li, Y. Ni, Sep. Purif. Technol. 31 (2003) 13-18.
[8] A. Kapoor, T. Viraraghavan, Bioresour. Technol. 53 (1995) 195-206.
[9] C.T. Kresge, M.E. Leonowics, W.J. Roth, J.C. Vartuli, J.S. Beck, Nature 359 (1992) 710-712.
[10] J.S. Beck, J.C. Vartuli, W.J. Roth, M.E. Leonowics, C.T. Kresge, K.D. Schmitt, C.T.W. Chu, D.H.
Olson, E.W. Sheppard, S.B. Mccullen, J.B. Higgins, J.L. Schlenker, J. Am. Chem. Soc. 114 (1992)
[11] P. Selvam, S.K. Bhatia, C.G. Sonwane, Ind. Eng. Chem. Res. 40 (2001) 3237-3261.
[12] C.F. Cheng, W. Zhou, D.H. Park, J. Klinowski, M. Hargreaves, L.F. Gladdin, J. Chem. Soc., Faraday
Trans. 93 (1997) 359-363.
[13] G.H. Mahdavinia, M.M. Ghanbari, H. Sepehrian, F. Kooti, J. Iran. Chem. Res. 3 (2010) 117-120.
[14] P.K. Jal, S. Patel, B.K. Mishra, Talanta 62 (2004) 1005-1028.
[15] J. Li, T. Qi, L. Wang, C. Liu, Y. Zhang, Mater. Lett. 61 (2007) 3197-3200.
[16] G.E. Fryxell, S.V. Mattigod, Y. Lin, H. Wu, S. Fiskum, K. Parker, F. Zheng, W. Yantasee, T.S.
Zemanian, R.S. Addleman, J. Liu, K. Kemner, S. Kelly X. Feng, J. Mater. Chem. 17 (2007) 2863-
[17] G.E. Fryxell, G. Cao, Environmental Applications of Nanomaterials, synthesis, sorbents and sensors,
Imperical Collge Press, London, 2007.
[18] S. Brunauer, P.H. Emmett, E. Teller, J. Am. Chem. Soc. 60 (1983) 309-319.
[19] E.P. Barrett, L.G. Joyner, P.P. Halenda, J. Am. Chem. Soc. 73 (1951) 373-380.
[20] H. Sepehrian, S.J. Ahmadi, S. Waqif-Husain, H. Faghihian, H. Alighanbari, J. Hazard. Mater. 176
(2010) 252-256.
[21] P. Srivastava, B. Singh, M.J. Angove, Competitive adsorption of cadmium (II) onto kaolinite as
affected by pH, 3rd Australian New Zealand Soils Conference, University of Sydney, Australia, 2004,
[22] R. Vimala, N. Das, J. Hazard. Mater. 168 (2009) 376-382.
[23] M. Chaudhuri, S.R.M. Kutty and S.H. Yusop, Nat. Environ. Pollut. Tech. 9 (2010) 25-28.
[24] C.H. Giles, D. Smith, A. Huitson, J. Colloid Interf. Sci. 47 (1974) 755-765.
[25] O. redlich, D.L. Peterson, J. Phys. Chem. 63 (1959) 1024-1026.
[26] K. Vasanth Kumar, K. Porkodi, J. Hazard. Mater. 143 (2007) 598-599.
[27] W. Zu-wei, Z. Xiang-feng, Y. Xiaoman, W. Dong-Bin, Influence of Inorganic Salts on Cadmium
Adsorption By Montmorillonite and illite in Alkaline Conditions, 3th International Conference on
Bioinformatics and Biomedical Engineering, 2009.