Spectroscopic evidence of Cu(II) and Zn(II) complexes having amino acid based Schiff base: A special emphasis on in vitro antimicrobial, DNA binding and cleavage studies

Authors

Research Department of Chemistry, VHNSN College, Virudhunagar-626 001, India

Abstract

A new Schiff base ligand (L) obtained by the condensation reaction of N-acetylaceto-otoluidine
and 2-aminopropanoic acid (an amino acid), is used to synthesize four mononuclear
complexes of [MLCl] and [ML2] types (where M = Cu(II) and Zn(II); L = Schiff base) by
keeping the metal and ligand ratio as 1:1 and 1:2 respectively. This ligand and its complexes
have been characterized on the basis of different spectral methods. EPR, UV-Vis. and magnetic
moment data afford a square-planar geometry for the [MLCl] complexes and octahedral
geometry for the [ML2] complexes. The observed low molar conductivity of these complexes at
room temperature is consistent with their non-electrolytic nature. All the complexes display
significant oxidative cleavage of circular plasmid pBR322 DNA in the presence of hydrogen
peroxide. UV spectroscopic titration with CT DNA reveals that the complexes can bind to CT
DNA and the binding constants to CT DNA have been calculated. The cyclic voltammograms of
the complexes in the presence of CT DNA reveal that they bind to CT DNA probably by the
intercalative binding mode. The antimicrobial activity of the complexes has been tested against
microorganisms showing that they exhibit higher activity than free Schiff base ligand.

Keywords


[1] D.M.C. Maria, Ribeiro da silva, M.G. Jorge, L.R.S. Ana, C.F.C. Paula, Bernd Schroder, A.V.
Manual, J. Mol. Catal. A: Chem. 224 (2004) 207-212.
[2] C. Spinu, A. Kriza, Acta. Chem. Slov. 47 (2000) 179-185.
[3] D.M. Boghaei, M. Gharagozlou, Spectrochim. Acta Part A 67 (2007) 944-949.
[4] N. Raman, K. Pothiraj, T.Baskaran, J. Mol. Struct. 1000 (2011) 135-144.
[5] D. Sattari, E. Alipour, S. Shriani, J. Amighian, J. Inorg. Biochem. 45 (1992) 115-122.
[6] A. Sreedhara, J.A. Cowan, J. Biol. Inorg. Chem. 6, (2001) 337-347.
[7] Y. Lu, Chem. Eur. J. 8 (2002) 4588-4596.
[8] N. Sträter, W.N. Lipscomb, T. Klabunde, B. Krebs, Angew. Chem. Int. Ed. Engl. 35 (1996) 2024-
2055.
[9] T.M. Aminabhavi, N.S. Biradar, S.B. Patil, V.L. Roddabasanagoudar, W.E. Rudzinski, Inorg. Chim.
Acta 107 (1985) 231-234.
[10] Vogel A Text Book of Quantitative Inorganic Analysis (3rd ed.). ELBS, Longman, London, 1969.
[11] Y.Z. Cai, Q. Luo, M. Sun, H. Corke, Life Sci. 74 (2004) 2157-2184.
[12] K.E. Heim, A.R. Tagliaferro, D.J. Bobilya, J. Nutr. Biochem. 13 (2002) 572-584.
[13] L.G. Van Waasbergen, I. Fajdetic, M. Fianchini, H.V. Rasika dias, J. Inorg. Biochem. 101 (2007)
1180-1183.
[14] J. Bernadou, G. Pratviel, F. Bennis, M. Girardet, B. Meunier, Biochemistry, 28 (1989) 7268-7275.
N. Raman & et al. / J. Iran. Chem. Res. 4 (2011) 263-279
279
[15] T.C. Michael, R. Marisol, J.B. Allen, J. Am. Chem. Soc. 111 (1989) 8901-8911.
[16] M.S. Ameerunisha Begum, S. Saha, M. Nethaji, A.R. Chakravarty, J. Inorg. Biochem. 104 (2010)
477-484.
[17] N. Raman, R. Jeyamurugan, A. Sakthivel, L. Mitu, Spectrochim. Acta part A 75 (2010) 88-97.
[18] M.S. Sujamol, C.J. Athira, Y. Sindhu, K. Mohanan, Spectrochim. Acta part A 75 (2010) 106-112.
[19] E. Tas, M. Aslanoglu, A. Kilic, Z. Kara, J. Coord. Chem. 59 (2006) 861-872.
[20] M. Odabasoglu, F. Arslan, H. Olmez, O. Buyukgungor, Dyes Pigm. 75 (2007) 507-515.
[21] Z. Chen, Y. Wu, D. Gu, F. Gan, Spectrochim. Acta part A 68 (2007) 918-926.
[22] A. Biswas, M.G.B. Drew, A. Ghosh, Polyhedron 29 (2010) 1029-1034.
[23] N. Raman, A. Selvan, J.Coord.Chem. 64 (2011) 534-553.
[24] F.A. Cotton, G. Wilkinson, Advanced Inorganic Chemistry. A Comprehensive Text (4th ed.) John
Wiley and Sons, New York, 1986.
[25] B.J. Hathaway, D.E. Billing, Coord. Chem. Rev. 5 (1970) 143-207.
[26] G. Speir, J. Csihony. A.M. Whalen and C.G. Pierpont, Inorg. Chem. 35 (1996) 3519-3524.
[27] J.K. Barton, A.T. Danishefsky, J.M. Goldberg, J. Am .Chem. Soc. 106 (1984) 2172-2176.
[28] N. Raman, A. Sakthivel, R. Jeyamurugan, J. Coord. Chem. 62 (2009) 3969-3985.
[29] N. Raman, R. Jeyamurugan, R Usha Rani, T. Baskaran, L. Mitu, J. Coord. Chem. 63 (2010) 1629-
1644.
[30] L.F. Tan, X.H. Liu, H. Chao and L.N. Ji, J. Inorg. Biochem. 101 (2007) 56-63.
[31] F. Arjmand, M. Aziz, Eur. J. Med. Chem. 44 (2009) 834-844.
[32] S. Mahadevan, M. Palaniandavar, Inorg. Chem. 37 (1998) 693-700.
[33] A.B. Tossi, J.M. Kelly, Photochem. Photobiol. 9 (1989) 545-556.
[34] S. Satyanarayana, J.C. Dabrowiak, J.B. Chaires, Biochemistry, 31 (1992) 9319-9324.
[35] B.D. Wang, Z.Y. Yang, D.W. Zhang, Y. Wang, Spectrochim. Acta part A 63 (2006) 213-219.
[36] J.W. Searl, R.C. Smith, S.J. Wyard, Proc. Phys. Soc. 78 (1961) 1174-1176.
[37] P.V. Rao, A.V. Narasaiah, Indian J. Chem. A 42 (2003) 1896-1899.
[38] N. Raman, A. Selvan, P. Manisankar, Spectrochim. Acta part A 76 (2010) 161-173.
[39] N. Raman, A. Sakthivel, R. Jeyamurugan, J. Coord. Chem. 63 (2010) 1080-1096.
[40] N. Raman, A. Sakthivel, K. Rajasekaran, J. Coord. Chem. 62 (2009) 1661-1676.