Hybrid-DFT study and NBO interpretations of conformational behaviors of 2-methoxy-1,2,4,5-tetrahydro-benzo[d]oxepine, -thiepine and -selenepine

Authors

1 Department of Chemistry, Arak Branch, Islamic Azad University, Arak, Iran

2 Department of Chemistry, Zanjan Branch, Islamic Azad University, Zanjan, Iran

3 Department of Chemistry, Roudehen Branch, Islamic Azad University, Roudehen, Iran

Abstract

NBO analysis and density functional theory (DFT: B3LYP/6-311+G**) based method were used to study the impacts of the anomeric effects (AE) on the conformational properties of 2-methoxy-1,2,4,5-tetrahydro-benzo[d]oxepine (1), -thiepine (2) and -selenepine (3). The Gibbs free energy difference (Geq–Gax) values (i.e. ΔGeq-ax) at 298.15 K and 1 atm between the axial and equatorial conformations increase from compound 1 to compound 2 but decrease from compound 2 to compound 3. The NBO analysis showed that the AE associated with donor-acceptor (LP→σ*) interactions increases from compound 1 to compound 2 but decreases from compound 2 to compound 3. Also, the calculated dipole moment difference [Δ(μeq - μax)] values between the axial and equatorial conformations increase from compound 1 to compound 2 but increase from compound 2 to compound 3. Based on the results obtained, there is no conflict between the AE and the electrostatic interactions [i.e. Δ(μeq - μax)] on the conformational behaviors of compounds 1-3.

Keywords


[1] T. Edwards, Chem. Ind. (London) (1955) 1102.
[2] N.D. Epiotis, R.L. Yates, R.J. Larson, C.R. Kirmayer, F. Bernardi, J. Am. Chem. Soc. 99 (1977) 8379-8388.
[3] E.L. Eliel, S.H. Wilen, Stereochemistry of Organic Compounds, Wiley, New York, 1994.
[4] E. Juaristi, G. Cuevas, The Anomeric Effect, CRC Press. Inc., Florida, 1995.
[5] N.L. Allinger, J. A. Hirsch, M.A. Miller, F.A. VanCatledge, J. Am. Chem. Soc. 90 (1968) 1199-1210.
[6] J.–P. Praly, R.U. Lemieux, Can. J. Chem. 65 (1987) 213-223.
[7] S. Désilets, M. St-Jacques, Can. J. Chem. 70 (1992) 2650-2657.
[8] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, J.A. Montgomery, T. Vreven, K.N. Kudin, J.C. Burant, J.M. Millam, S.S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G.A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J.E. Knox, H.P. Hratchian, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, P.Y. Ayala, K. Morokuma, G.A. Voth, P. Salvador, J.J. Dannenberg, V.G. Zakrzewski, S. Dapprich, A.D. Daniels, M.C. Strain, O. Farkas, D.K. Malick, A.D. Rabuck, K. Raghavachari, J.B. Foresman, J.V. Ortiz, Q. Cui, A.G. Baboul, S. Clifford, J. Cioslowski, B.B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R.L. Martin, D.J. Fox, T. Keith, M.A. Al-Laham, C.Y. Peng, A. Nanayakkara, M. Challacombe, P.M.W. Gill, B. Johnson, W. Chen, M.W. Wong, C. Gonzalez, J.A. Pople, Gaussian 03, Revision B.03, Gaussian, Inc., Wallingford CT, 2004.
[9] A.D. Becke, J. Chem. Phys. 98 (1993) 5648-5652.
[10] C. Lee, W. Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785-789.
[11] W.J. Hehre, L. Radom, P.v.R. Schleyer, J.A. Pople, Ab initio Molecular Orbital Theory, Wiley, New York, 1986.
[12] J.M. Seminario, P. Politzer, (Eds), Modern Density Function Theory, A Tool for Chemistry, Elsevier, Amsterdam, 1995.
[13] E.D. Glendening, J.K. Badenhoop, A.E. Reed, J.E. Carpenter, J.A. Bohmann, C.M. Morales, F. Weinhold, Theoretical Chemistry Institute, University of Wisconsin, Madison, WI, 2004. NBO Version 5.G.
[14] N.D. Epiotis, R.L. Yates, R.J. Larson, C.R. Kirmayer and F. Bernardi, J. Am. Chem. Soc. 99 (1977) 8379-8388.
[15] P. Dionne, M. St-Jacques, J. Am. Chem. Soc. 109 (1987) 2616-2623.
[16] F. Weinhold, Angew. Chem. Int. Ed. 42 (2003) 4188-4194.
[17] D. Nori-Shargh, F. Roohi, F. Deyhimi, R. Naeem-Abyaneh, J. Mol. Struct. (THEOCHEM) 763 (2006) 21-28.
[18] D. Nori-Shargh, M. Malekhosseini, F. Deyhimi, J. Mol. Struct. (THEOCHEM) 763 (2006) 187-198.
[19] D. Nori-Shargh, F. Deyhimi, J.E. Boggs, S. Jameh-Bozorghi, R. Shakibazadeh, J. Phys. Org. Chem. 20 (2007) 355-364.
[20] D. Nori-Shargh, H. Yahyaei, J. Mol. Struct. (THEOCHEM) 913 (2009) 8-15.
[21] D. Nori-Shargh, N. Hassanzadeh, M. Kosari, S. Sharifi, J. Mol. Struct. (THEOCHEM) 940 (2010) 129-134.
[22] A. Zeinalinezhad, D. Nori-Shargh, Z. Abbasi-Bakhtiari, J.E. Boggs, J. Mol. Struct. (THEOCHEM) 947 (2010) 52-57.
[23] D. Nori-Shargh, H. Yahyaei, J.E. Boggs, J. Mol. Graph. Model. 91 (2010) 3616-3620.
D. Nori-Shargh & et al. / J. Iran. Chem. Res. 4 (2011) 39-49
49
[24] D. Nosi-Shargh, Z. Mahmoodi, N. Masnabadi, H. Yahyaei, S.N. Mousavi, J. Iran. Chem. Res. 3 (2010) 179-189.
[25] F. Freeman, A. Phornvoranunt, W.J. Hehre, J. Phys. Org. Chem. 11 (1998) 831-839.
[26] T.M. Gilbert, Tetrahedron Lett. 39 (1998) 9147-9150.
[27] M. Remko, P.D. Lyne, W.G. Richards, Phys. Chem. Chem. Phys. (1991) 5353-5357.
[28] D. Strickland, R.A. Caldwell, J. Phys. Chem. 97 (1993) 13394-13402.
[29] I. Arnason, G.K. Thorarinson, E. Matern, J. Mol. Struct. (THEOCHEM) 454 (1998) 91-102.