Characterization and quantification of the cross-linking of linear low density polyethylene with silane grafting by Fourier transform infrared (FTIR) spectroscopy

Authors

Department of Chemistry, Faculty of Science, Islamic Azad University, Central-Tehran Branch, P.O. Box 13185/768, Tehran, Iran

Abstract

The way of making cross-linkable polyethylene through silane grafting has gained much attention in recent
years because of its various advantages such as easy processing, low cost and capital investment and
favorable properties in the processed materials. This work deals with silane grafting and moisture crosslinking
of linear low density polyethylene (LLDPE). The grafting reaction was performed in an internal
mixer using di-cumyl peroxide (DCP) as initiator and vinyl-trimethoxy silane (VTMOS) as grafting agent.
Characterization and quantification of the grafting was performed by Fourier transform infrared (FTIR)
spectroscopy. The cross-linking was done by subsequent immersion of grafted samples in hot water. The
effect of silane and peroxide concentration was more considerable than time. The order of degradation
temperature was: cross-linked LLDPE then grafted LLDPE and at last LLDPE.

Keywords


[1] C. Jiao, Z. Wang, Z. Gui, Y. Hu, Eur. Polym. J. 41 (2005) 1204-1211.
[2] S. Ultsch, H.G. Fritz, Plast. Rubber Process Appl. 13 (1990) 81-91.
[3] M.P. Munoz, P.M.D. Vargas, M.M. Werlang, I. Valeria, P. Yoshida, R.S. Mauler, J. Appl. Polym. Sci.
82 (2001) 3460-3467.
[4] H.G. Scott, US patent no.3646155, 1972.
[5] B.A. Sultan, M. Palmlof, Plast. Rubber Compos. Process. Appl. 21 (1994) 65-73.
[6] H.G. Scott, J.F. Humpries, Mod. Plast 50 (1973) 82-87.
[7] B. Thomas, M. Bowrey, Wire. J. 10 (1977) 88-94.
[8] D. Munteanu, Polymer 49 (1985) 479-509.
[9] P. Swarbrick, W.J. Green, C. Maillefer, US Patent no. 4117195, 1978.
[10] Y.T. Shieh, J.S. Liau, T.K. Chen, J. Appl. Polym. Sci. 81 (2001) 86-196.
[11] K.E. Oliphant, K.E. Russell, W.E. Baker, Polymer 36 (1995) 1597-1603.
[12] R. Anderlink, H.G. Fritz, Int. Polym. Sci. 11 (1992) 3-10.
[13] A.J. Peacock, Handbook of polyethylene, structures, properties, and applications. Marcel Dekeker, New
York 2000.
E. Konoz et al., J. Iranian Chem. Res. 5 (1) (2012) 31-38
38
[14] M. Narkis, A. Tzur, A.H.G. Vaxman, Polymer Engin. Sci. 25 (1985) 857-862.
[15] T. Hjertberg, M. Palmolf, B.A. Sultan, J. Appl. Polym. Sci. 42 (1991) 1185-1191.
[16] G.S. Ahmed, M. Gilbert, S. Mainprize, M. Rogerson, J. Plas Rubber Composite 38 (2009) 13-19.
[17] Y.T. Shieh, C.M. Liu, J. Appl. Polym. Sci. 74 (1999) 3404-3411.
[18] A.K. Sen, B. Mukherjee, A. Battacharyya, P.P. De, A.K. Bhowmick, J. Appl. Polym. Sci. 44 (1992)
1153-1164.
[19] C. Rosales, R. Perera, M. Ichazo, J. Gonzalez, H. Rojas, A. Sanchez, A.D. Barrios, J. Appl. Polym. Sci.
70 (1998) 161-176.
[20] J.A. McCormick, J.R. Royer, C.R. Hwang, S.A. Khan, J. Polym. Sci. 38 (2000) 2468-2479.
[21] Y. Shieh, T.H. Tsai, J. Appl. Polym. Sci. 69 (1998) 255-261.
[22] C. Jiao, Z. Wang, Z. Gui, Y. Hu, Eur. Polym. J. 41 (2005) 1204-1209.