Microwave induced combustion Synthesis of Nano- Codoped Ceria and their electrical properties

Author

Department of chemistry, University of Science and Technology of Iran, Tehran, Iran

Abstract

In this work, Ce0.75Gd0.1Ca0.15O1.8 nanopowders are successfully synthesized by a Glycine-nitrate combustion
process under the microwave irradiation. Then calcination was carried out at 700 °C. Calcined powders
identified by room temperature X-ray diffraction were single phase and had a crystallite size between 16 to 24
nm (based on Schererr formula). Scanning electron microscopy (SEM) was employed to characterize the
morphology of powder. We also studied the effect of fuel to nitrate ratio on the amount of released energy
and on the crystallite size and compositional homogeneity of the resulting powders. Finally electrical
properties of obtained powder were studied.

Keywords


[1] I. Hideaki, T. Hiroaki, Solid State Ionics 83 (1996) 1-16.
[2] B.C.H. Steele, Solid State Ionics 129 (2000) 95-110.
[3] T.S.Zhang, J.Ma, L.B.Kong, S.H.Chan, Solid State Ionics 167 (2004) 203-207.
[4] T.S. Zhang, Z.Q. Zeng, H.T. Huang, P. Hing, J. Kilner, Mater. Lett. 57 (2002) 124-129.
[5] J. Herle, D. Seneviratne, A.J. McEvoy, J. Eur. Ceram. Soc. 19 (1999) 837-841.
[6] F.Y. Wang, S.Y. Chen, S. Cheng, Electrochem. Commun. 6 (2004) 746-746.
[7] F.Y. Wang, S.Y. Chen, Q. Wang, S.X. Yu, S. Cheng, Catal. Today 97 (2004) 189-194.
[8] D. A. Fumo, M. R. Morelli, Mater. Res. Bull. 31 (1996) 1243–1255.
[9] D. A. Fumo,J. R. Jurado, A. M. Segadaes, Mater. Res. Bull. 32 (1997) 1459-1470.
[10] J. R. Jain, K. C. Adiga,V. R. P. Verneker, Comb. Flame 40 (1981) 79-71.
[11] R. Gopi Chandran, K.C. Patil, G.T. Chandrappa, J. Mater. Sci. Lett. 14 (1995) 548-551.
[12] K.C. Patil, S.T. Aruna, Curr. Opin. Solid State Mater. Sci. 2 (1997) 158-165.
[13] J. Van herle, T. Horita, T. Kawada, Solid State Ionics 86–88 (1996) 1255-1258.
[14] Pradyot Dattaa, Peter Majewski, Mater. Charact. 60 (2009) 138-143
[15] T. Y. Peng, H. P. Yang, X. L. Pu, B. Hu, Z. C. Jiang, Mater. Lett. 58 (2004) 352-356.
[16] R. D. Purohit, S. Saha, A. K. Tyagi, J. Nucl. Mater. 288 (2001) 7-10.
[17] N. Dasgupta, R. Krishnamoorthy, K. T. Jacob, J. Inorg. Mater. 3 (2002) 143-149.
[18] T. Mimani, K.C. Patil, Mater. Phys. Mech. 4 (2001) 1-5.
[19] T. V. Anuradha, S. Ranganathan, T. Mimani, Scripta Mater. 44 (2001) 2237-2241.
[20] G. Fagherazzi, S. Polizzi, M. Bettinelli, A. Speghini, J. Mater. Res. 15 (2000) 586-589.
[21] D. G. Lamas, R. E. Juarez, G. E. Lascalea, J. Mater. Sci. Lett. 20 (2001) 1447-1449.
[22] Xu Hongmei, Yan Hongge , Chen Zhenhua , Solid State Sci. 10 (2008) 1179-1184
[23] S. Zha, C. Xia, G. Meng, J. Power Sources 115 (2003) 44-48.