Synthesis of tri and four substituted imidazoles derivatives using zinc oxid nanotubes modified by SiO2 as a powerful and reusable catalyst


1 Deparment of chemistry, Islamic Azad University, Omidiyeh Branch, Omidiyeh, Iran

2 Deparment of chemistry, Islamic Azad University Kazerun Branch, Kazerun, Iran


In recent years, zinc oxid nanotubes have attracted much attention. The direct use of , zinc oxid
nanotubes modified by SiO2 as recoverable catalysts for organic reactions is very rare. The catalysts
were characterized by XRD. The average particle size of ZnO catalysts is 57 nm and there are highdensity
defects on nanotubes surfaces . A simple and efficient method for the imidazol derivatives
synthesis from the condensation benzil and ammonium acetate with substituted aromatic aldehydes
in the presence of a catalytic amount zinc oxid nanotubes modified by SiO2 is described. The reason
proposed for higher catalytic activity of zinc oxid nanotubes modified by SiO2 is a combination
effect of the small particle size and high-density surface defects. The practical and simple method
led to excellent yields of the tri and four substituted imidazoles derivatives under mild conditions
and within short times.


[1] D.N. Sushma., M. Siddeswaran, Indian J. Heterocycl. Chem. 15 (2005) 195-200.
[2] P. Renukadevi., J. S. Biradar., S. Hiremath, Indian J. Heterocycl. Chem. 6 (1997) 277-281.
[3] P. Cozzi., G. Carganico., D. Fusar., M. Grossoni., M. Menichincheri., V. Pinciroli ., R. Tonani., F.
Vaghi., P. Salvati, J. Med. Chem. 36 (1993) 29642972.
[4] J. Mohan., A. Kumar, Indian J. Heterocycl. Chem. 12 (2002) 41-44.
[5] Y. E. Shealy., J. A. Montogomery., W. R. Loster, J. Biochem. Pharmacol. 11 (1962) 674-680.
[6] S. Meenakshi., R. Reenakalsi., K. S. Dixit., C. Nath., J. P. Barthwal, Indian J. Chem. 29B (1990) 85-87.
[7] M. Harfenist., E. F. Soroko., G. M. Mekenzie, J. Med. Chem. 1 (1978) 405-408
[8] L. C. Patricia., M. G. Christine., B. M. Stephen., J. Agric. Food Chem. 36 (1988) 1071-1076.
[9] H. Miyachi., H. Kiyota., M. Segawa, Chem. Lett. 18 (1998) 2163-2168.
[10] T. R. Sharpe., S. C. Cherkovsky., W.E. Hewes., D. H. Smith., W. A. Gregory., S. B. Haber., M. R.
Leadbetter., J. G. Whitney, J. Med. Chem. 28 (1985) 1188.
[11] J. C. Stephen., D. Geoffrey., R. Colin., S. Gardner., W. Robert, J. Med. Chem. 31 (1988) 1220-1225.
[12] I. Sircar., B. L. Duell., A. Bristol., R. E. Weishaar., D. B. Evans, J. Med. Chem. 30 (1987) 1023-1029.
[13] K. Teiji., T. Yasutaka., H. Kenji., T. Hiroshi, J. Med. Chem. 36 (1996) 1630-1364.
[14] C. Chuen., E. J. Bailey, J. Med. Chem. 36 (1996) 3646-3657.
[15] W. B. Paul, Org. Lett. 1 (1991) 249-252.
[16] L.C. Miller., M. L. Tainter, Proc. Soc. Exp. Biol. Med. 57 (1994) 261-264.
[17] C. A. Winter., E. A. Risely., G. W. Nuss, Proc. Soc. Exp. Biol. 111 (1962) 554-557.
[18] A. K. Misra., P. C. Dandiya., S. K. Kulkarni, Indian J. Pharmacol. 5 (1973) 449-450.
[19] M. Xia., D. Y. Lu, J. Mol. Cata. A: Chem. 265 (2007) 205-208.
[20] M. Kidwai., P. Mothsra., V. Bansal., K. R. Somvanshi., A. S. Ethayathulla., S. Dey., P. T. Singh, J. Mol.
Cata. A: Chem. 265 (2007) 177-182.
[21] J.M. Mary., A. H. Richard., C. C. Pamela, Lippincott’s Illustrated Reviews; LippincottWilliams
Wilkins, London, 2000..
[22] G. M. Shen., C. Cai., B. W. Yi, J. Fluorine Chem. 129 (2008) 541-544.
[23] D. S. Sharma., P. Hazarika., D. Konwar, Tetrahedron Lett. 49 (2008) 2216-2220.
[24] S. B. Sapkal., K. F. Shelke., B. B. Shingate., M. S. Shingare, Tetrahedron Lett. 50 (2009) 1754-1756.
[25] A. Bavoso., L. Menabue., M. Saladini., M. Sola, Inorg. Chem. Acta. 13 (1994) 1495-1499.
[26] G. Nagalakshmi, E. J. Chem. 5 (2008) 447-452.
[27] K. Niknam., D. Saberi., M. Baghernejad, J. Chin. Chem. Lett. 20 (2009) 1444-1448.
[28] K. Niknam., D. Saberi, J. Can. J. Chem. 88 (2010) 167-171.
[29] A. Jancso., T. Gajda., A. Szorcsik., T. Kiss., B. Henry., G. Vanko, 19 (2000) 238-240 .